Answer: 40.4M/s
Solution: 46.6/1.15 = 40.4347826 then round it to a single decimal point, since 3 is lower than 5 it will be rounded to 40.4
The electric field is zero at x = -16.45cm
Data;
- q1 = 3.4 μC
- q2 = -2.0 μC
- distance = 5cm
<h3>The Electric Field at point 0</h3>
As the 3μC is larger than -2.0μC and the charges are opposite sign. The electric field will be zero at the negative axis.
Let the point be at x.
For an electric field to be equal to zero;

Let's solve for x using mathematical methods.

Solving the above quadratic equation;

The electric field is zero at x = -16.45cm
Learn more on electric field at a point here;
brainly.com/question/1592046
brainly.com/question/14372859
Answer:
w = 1.14 rad / s
Explanation:
This is an angular momentum exercise. Let's define a system formed by the three bodies, the platform, the bananas and the monkey, in such a way that the torques during the collision have been internal and the angular momentum is preserved.
Initial instant. The platform alone
L₀ = I w₀
Final moment. When the bananas are on the shelf
we approximate the bananas as a point load and the distance is indicated
x = 0.45m
L_f = (m x² + I ) w₁
angular momentum is conserved
L₀ = L_f
I w₀ = (m x² + I) w₁
w₁ =
Let's repeat for the platform with the bananas and the monkey is the one that falls for x₂ = 1.73 m
initial instant. The platform and bananas alone
L₀ = I₁ w₁
I₁ = (m x² + I)
final instant. After the crash
L_f = I w
L_f = (I₁ + M x₂²) w
the moment is preserved
L₀ = L_f
(m x² + I) w₁ = ((m x² + I) + M x₂²) w
(m x² + I) w₁ = (I + m x² + M x₂²) w
we substitute
w =
w =
the moment of inertia of a circular disk is
I = ½ m_p x₂²
we substitute
w =
let's calculate
w =
w =
w = 1.14 rad / s
Explanation:
rent me for brainliest pls
The answer is b
300,000 km