Answer:
He's 3 miles west of school.
Explanation:
He went 5 miles up and 5 miles down which means that he really didn't go up or down. In between that, he went 3 miles west so if the 5 milers don't count, this puts him at 3 miles west of school.
Answer:
a) 0.3965 j
b) 0.3112 m
Explanation:
The picture attached explains it all. Thank you
Answer:
total distance = 1868.478 m
Explanation:
given data
accelerate = 1.68 m/s²
time = 14.2 s
constant time = 68 s
speed = 3.70 m/s²
to find out
total distance
solution
we know train start at rest so final velocity will be after 14 .2 s is
velocity final = acceleration × time ..............1
final velocity = 1.68 × 14.2
final velocity = 23.856 m/s²
and for stop train we need time that is
final velocity = u + at
23.856 = 0 + 3.70(t)
t = 6.44 s
and
distance = ut + 1/2 × at² ...........2
here u is initial velocity and t is time for 14.2 sec
distance 1 = 0 + 1/2 × 1.68 (14.2)²
distance 1 = 169.37 m
and
distance for 68 sec
distance 2= final velocity × time
distance 2= 23.856 × 68
distance 2 = 1622.208 m
and
distance for 6.44 sec
distance 3 = ut + 1/2 × at²
distance 3 = 23.856(6.44) - 0.5 (3.70) (6.44)²
distance 3 = 76.90 m
so
total distance = distance 1 + distance 2 + distance 3
total distance = 169.37 + 1622.208 + 76.90
total distance = 1868.478 m
Hi there!
We can begin by finding the acceleration of the block.
Use the kinematic equation:

The block starts from rest, so:

Now, we can do a summation of forces of the block using Newton's Second Law:

mb = mass of the block
T = tension of string
Solve for tension:

Now, we can do a summation of torques for the wheel:

Rewrite:

We solved that the linear acceleration is 1.5 m/s², so we can solve for the angular acceleration using the following:

Now, plug in the values into the equation:

Answer:
A.2.95 m
B.7
Explanation:
We are given that
Diffraction grating=600 lines/mm
d=
Wavelength of light,
l=4.6 m
A.We have to find the distance between the two m=1 bright fringes

For first bright fringe, =1


The distance between two m=1 fringes

Hence, the distance between two m=1 fringes=2.95 m
B.For maximum number of fringes,


Substitute the values


Maximum number of bright fringes on the scree=