1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jenyasd209 [6]
3 years ago
9

A small submarine has a triangular stabilizing fin on its stern. The fin is 1 ft tall and 2 ft long. The water temperature where

it is traveling is 60°F. Determine the drag on the fin when the submarine is traveling at 2.5 ft/s.

Engineering
1 answer:
Arturiano [62]3 years ago
8 0

Answer:

\mathbf{F_D \approx 1.071 \ lbf}

Explanation:

Given that:

The height of a  triangular stabilizing fin on its stern is 1 ft tall

and it length is 2 ft long.

Temperature = 60 °F

The objective is to determine the drag on the fin when the submarine is traveling at a speed of 2.5 ft/s.

From these information given; we can have a diagrammatic representation describing how the  triangular stabilizing fin looks like as we resolve them into horizontal and vertical component.

The diagram can be found in the attached file below.

If we recall ,we know that;

Kinematic viscosity v = 1.2075 \times 10^{-5} \ ft^2/s

the density of water ρ = 62.36 lb /ft³

Re_{max} = \dfrac{Ux}{v}

Re_{max} = \dfrac{2.5 \ ft/s \times 2  \  ft }{1.2075 \times 10 ^{-5} \ ft^2/s}

Re_{max} = 414078.6749

Re_{max} = 4.14 \times 10^5 which is less than < 5.0 × 10⁵

Now; For laminar flow;  the drag on  the fin when the submarine is traveling at 2.5 ft/s can be determined by using the expression:

dF_D = (\dfrac{0.664 \times \rho  \times U^2 (2-x) dy}{\sqrt{Re_x}})^2

where;

(2-x) dy = strip area

Re_x = \dfrac{2.5(2-x)}{1.2075 \times 10 ^{-5}}

Therefore;

dF_D = (\dfrac{0.664 \times 62.36  \times 2.5^2 (2-x) dy}{\sqrt{ \dfrac{2.5(2-x)}{1.2075 \times 10 ^{-5}}}})

dF_D = 1.136 \times(2-x)^{1/2} \ dy

Let note that y = 0.5x from what we have in the diagram,

so , x = y/0.5

By applying the rule of integration on both sides, we have:

\int\limits \  dF_D =  \int\limits^1_0 \  1.136 \times(2-\dfrac{y}{0.5})^{1/2} \ dy

\int\limits \  dF_D =  \int\limits^1_0 \  1.136 \times(2-2y)^{1/2} \ dy

Let U = (2-2y)

-2dy = du

dy = -du/2

F_D =  \int\limits^0_2 \  1.136 \times(U)^{1/2} \ \dfrac{du}{-2}

F_D = - \dfrac{1.136}{2} \int\limits^0_2 \ U^{1/2} \ du

F_D = -0.568 [ \dfrac{\frac{1}{2}U^{ \frac{1}{2}+1 }  }{\frac{1}{2}+1}]^0__2

F_D = -0.568 [ \dfrac{2}{3}U^{\frac{3}{2} }   ] ^0__2

F_D = -0.568 [0 -  \dfrac{2}{3}(2)^{\frac{3}{2} }   ]

F_D = -0.568 [- \dfrac{2}{3} (2.828427125)}   ]

F_D = 1.071031071 \ lbf

\mathbf{F_D \approx 1.071 \ lbf}

You might be interested in
YO CUTIE! HELP MEEEEEE! Hazardous waste is a category that includes all of the following EXCEPT
madam [21]

your answer should be <u>B. Soluble</u>

3 0
3 years ago
Read 2 more answers
A mass of air occupying a volume of 0.15m^3 at 3.5 bar and 150 °C is allowed [13] to expand isentropically to 1.05 bar. Its enth
e-lub [12.9K]

Answer:

Total work: -5.25 kJ

Total Heat: 52 kJ

Explanation:

V0 = 0.15

P0 = 350 kPa

t0 = 150 C = 423 K

P1 = 105 kPa (isentropical transformation)

Δh1-2 = 52 kJ (at constant pressure)

Ideal gas equation:

P * V = m * R * T

m = (R * T) / (P * V)

R is 0.287 kJ/kg for air

m = (0.287 * 423) / (350 * 0.15) = 2.25 kg

The specifiv volume is

v0 = V0/m = 0.15 / 2.25 = 0.067 m^3/kg

Now we calculate the parameters at point 1

T1/T0 = (P1/P0)^((k-1)/k)

k for air is 1.4

T1 = T0 * (P1/P0)^((k-1)/k)

T1 = 423 * (105/350)^((1.4-1)/1.4) = 300 K

The ideal gas equation:

P0 * v0 / T0 = P1 * v1 / T1

v1 = P0 * v0 * T1 / (T0 * P1)

v1 = 350 * 0.067 * 300 / (423 * 105) = 0.16 m^3/kg

V1 = m * v1 = 2.25 * 0.16 = 0.36 m^3

The work of this transformation is:

L1 = P1*V1 - P0*V0

L1 = 105*0.36 - 350*0.15 = -14.7 kJ/kg

Q1 = 0 because it is an isentropic process.

Then the second transformation. It is at constant pressure.

P2 = P1 = 105 kPa

The enthalpy is raised in 52 kJ

Cv * T1 + P1*v1 = Cv * T2 + P2*v2 + Δh

And the idal gas equation is:

P1 * v1 / T1 = P2 * v2 / T2

T2 = T1 * P2 * v2 / (P1 * v1)

Replacing:

Cv * T1 + P1*v1 + Δh = Cv * T1 * P2 * v2 / (P1 * v1) + P2*v2

Cv * T1 + P1*v1 + Δh = v2 * (Cv * T1 * P2 / (P1 * v1) + P2)

v2 = (Cv * T1 + P1*v1 + Δh) / (Cv * T1 * P2 / (P1 * v1) + P2)

The Cv of air is 0.7 kJ/kg

v2 = (0.7 * 300 + 105*0.16 + 52) / (0.7 * 300 * 105 / (105 * 0.16) + 105) = 0.2 m^3/kg

V2 = 2.25 * 0.2 = 0.45 m^3

T2 = 300 * 105 * 0.2 / (105 * 0.16) = 375 K

The heat exchanged is Q = Δh = 52 kJ

The work is:

L2 = P2*V2 - P1*V1

L2 = 105 * 0.45 - 105 * 0.36 = 9.45 kJ

The total work is

L = L1 + L2

L = -14.7 + 9.45 = -5.25 kJ

8 0
3 years ago
Which explanation best identifies why the company in the following scenario has decided against investing in solar energy?
pickupchik [31]

Answer:

The company found the cost of the required photovoltaic cells too expensive.

Explanation:

Solar energy can be used as an alternative source of supply for fuel. Solar energy is a renewable source of energy, that is it keeps on replenishing every day. Also solar energy does not require a lot of maintenance.

The cost required is starting a solar system is very high because one needs to buy solar panel, photovoltaic cells for batteries, inverters and so on.

From the question, the company decided against solar energy for the time being. This means that probably in the future they might consider it. Therefore it is as a result of the economic situation of the company that they have not set up a solar system because the cost of the required photovoltaic cells too expensive.

8 0
3 years ago
Is it possible that two types of dislocation coexist. a)-True b)- False
Svetlanka [38]

Answer:

yes it is possible

Explanation:

dislocation are if two type edge and screw dislocations

edge dislocation is a defect where an extra half plane is inside the lattice.

and screw dislocation is one in which can be assumed as the first half of the crystal slips over another.

These dislocation can coexist together where the line direction and burger vectors are  neither parallel nor perpendicular then at that condition both dislocation screw and edge will coexist

3 0
3 years ago
Water is flowing into the top of an open cylindrical tank (which has a diameter D) at a volume flow rate of Qi and the water flo
deff fn [24]

Answer:

Z = 3 + 0.23t

The water level is rising

Explanation:

Please see attachment for the equation

8 0
3 years ago
Read 2 more answers
Other questions:
  • Hydrogen is preferred for regeneratively cooled nozzles because it is easy to pump. a)-True b)-False
    6·1 answer
  • Which of the following sentences correctly uses commas after prepositional phrases
    14·1 answer
  • What way the Robotics field is going to impact 1. Industry and productivity 2 . Environment 3. Medical field 4. Economics. From
    15·1 answer
  • What is the average speed of a car that travels 80km in 1.5 hours
    12·2 answers
  • Niagara Falls is capable of producing a total power output of 2.575 MW at steady-state during the night when flow over the falls
    14·2 answers
  • What percentage is 122 out of 222?
    5·2 answers
  • Beginning in the 1960s, various advocates of the design-build model began to agitate against the design-bid-build approach and f
    9·1 answer
  • Clean dry and wet mops monthly.<br> O True<br> O False
    11·2 answers
  • The National Park Service is waiting on your recommendation.
    7·1 answer
  • Exercise 6.4.8: Sum Two Number
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!