The oxidation state of the compound Mn (ClO4)3 is to be determined in this problem. For oxygen, the charge is 2-, the total considering its number of atoms is -24. Mn has a charge of +3. TO compute for Mn, we must achieve zero charge overall hence 3+3x-24=0 where x is the Cl charge. Cl charge, x is +7.
Answer:
0.914moles
Explanation:
The number of moles in a substance can be got by dividing the number of atoms/molecules/particles by Avagadro's constant (6.02 × 10^23).
That is;
number of moles (n) = number of atom (nA) ÷ 6.02 × 10^23
According to this question, there are 5.5 x 10-23 molecules of H2O
n = 5.5 x 10^23 ÷ 6.02 × 10^23
n = 0.914 × 10^(23-23)
n = 0.914 × 10^0
n = 0.914 × 1
n = 0.914moles
Answer:
Explanation:
Groundwater is stored in the open spaces within rocks and within unconsolidated sediments. Rocks and sediments near the surface are under less pressure than those at significant depth and therefore tend to have more open space. For this reason, and because it’s expensive to drill deep wells, most of the groundwater that is accessed by individual users is within the first 100 m of the surface. Some municipal, agricultural, and industrial groundwater users get their water from greater depth, but deeper groundwater tends to be of lower quality than shallow groundwater, so there is a limit as to how deep we can go.
Answer:
Option c and d
Explanation:
John Dalton. In 1808, John Dalton proposed a theory known as Dalton’s Atomic Theory. The theory was published in a paper titled “A New Chemical Philosophy”. This theory was new to that era
The 5 postulates of Daltons' atomic theory are:
1. All the matters are made of atoms.
2. Atoms of different elements combine to form compounds
3. Compounds contain atoms in small whole-number ratios
4. Atoms can neither be created nor destroyed
. (This was later proven wrong )
5. All atoms of an element are identical and have the same properties (This was later proven wrong as atoms of same element may be different in case of elements having isotopes )
Therefore, options c and d are the answer.
Answer:

Explanation:
Hello,
In this case, the molar enthalpy of reaction is obtained by dividing the involved energy by the reacting moles:

Thus, it is important to notice that the compound "uses" the energy, it means that it absorbs the energy, for that reason the sign is positive. Moreover, computing the result in kJ/mol we finally obtain:

Best regards.