Answer:

Explanation:
Given that,
Lightning flashes one mile (1609 m) away from you.
We need to find the time it take the light to travel that distance. Let the time be t. We know that,
speed = distance/time

So, the required time is 
Answer:
The space cadet that weighs 800 N on Earth will weigh 1,600 N on the exoplanet
Explanation:
The given parameters are;
The mass of the exoplanet = 1/2×The mass of the Earth, M = 1/2 × M
The radius of the exoplanet = 50% of the radius of the Earth = 1/2 × The Earth's radius, R = 50/100 × R = 1/2 × R
The weight of the cadet on Earth = 800 N

Therefore, for the weight of the cadet on the exoplanet, W₁, we have;

The weight of a space cadet on the exoplanet, that weighs 800 N on Earth = 1,600 N.
Answer:
meter
The SI unit of distance and displacement is the meter [m].
Explanation:
have advancedd
<span>If two objects collide, each object exerts a force equal to and in the opposite direction of the other.</span>
Answer:
a) v = √ 2gL abd b) θ = 45º
Explanation:
a) for this part we use the law of conservation of energy,
Highest starting point
Em₀ = U = mg h
Final point. Lower
Em₂ = ½ m v²
Em₀ = Em₂
m g h = ½ m v²
v = √2g h
v = √ 2gL
b) the definition of power is the relationship between work and time, but work is the product of force by displacement
P = W / t = F. d / t = F. v
If we use Newton's second law, with one axis of the tangential reference system to the trajectory and the other perpendicular, in the direction of the rope, the only force we have to break down is the weight
sin θ = Wt / W
Wt = W sin θ
This force is parallel to the movement and also to the speed, whereby the scalar product is reduced to the ordinary product
P = F v
The equation that describes the pendulum's motion is
θ = θ₀ cos (wt)
Let's replace
P = (W sin θ) θ₀ cos (wt)
P = W θ₀ sint θ cos (wt)
We use the equation of rotational kinematics
θ = wt
P = Wθ₀ sin θ cos θ
Let's use
sin 2θ = 2 sin θ cos θ
P = Wθ₀/2 sin 2θ
This expression is maximum when the sine has a value of one (sin 2θ = 1), which occurs for 90º,
2θ = 90
θ = 45º