<em></em>
Answer:
1. The magnitude of the force from the spring on the object is zero on <em>Equilibrium.</em>
2. The magnitude of the force from the spring on the object is a maximum on <em>The top and bottom.</em>
3. The magnitude of the net force on the object is zero on <em>The Bottom.</em>
4. The magnitude of the force on the object is a maximum on <em>the Top.</em>
Explanation:
<em>1. Because the change in position delta X is zero.</em>
<em>2. Because of delta X.</em>
<em>3. Beacuse, the force of gravity and the force of the spring oppose each other to keep the block at rest, away from the equilibrium position.</em>
<em>4. Because, the force of the spring from compressiom and the force of gravity both act on the mass.</em>
Answer:
Scientific notation of 0.01 is 1×10^-2
Explanation:
Low levels of fecal coliform
The particles of the medium (slinky in this case) move up and down (choice #2) in a transverse wave scenario.
This is the defining characteristic of transverse waves, like particles on the surface of water while a wave travels on it, or like particles in a slack rope when someone sends a wave through by giving it a jolt.
The other kind of waves is longitudinal, where the particles of the medium move "left-and-right" along the direction of the wave propagation. In the case of the slinky, this would be achieved by giving a tensioned slinky an "inward" jolt. You would see that such a jolt would give rise to a longitudinal wave traveling along the length of the tensioned slinky. Another example of longitudinal waves are sound waves.
Answer:
The horizontal distance the pumpkin will travel after it slips from the eagle is 17.02 m
Explanation:
Given;
height above the ground, h = 16.4 m
speed of the eagle, v = 9.3 m/s
The time it will take the pumpkin to fall at the given height is calculated as;

The horizontal distance traveled at this time is given by;
x = vt
x = (9.3)(1.83)
x = 17.02 m
Therefore, the horizontal distance the pumpkin will travel after it slips from the eagle is 17.02 m