Answer:
The height is 3.1m
Explanation:
Here we have a conservation of energy problem, we have a conversion form eslastic potencial energy to gravitational potencial energy, so:

then we have only gravitational potencial energy when the ball is at its maximun height.

because all the energy was transformed Eg=Ee

searching the web, the mass of a ping pong ball is 2.7 gr in average. so:

Answer:
Explanation:
a ) Time period T = 2 s
Angular velocity ω = 2π / T
= 2π / 2 = 3.14 rad /s
Initial moment of inertia I₁ = 200 + mr²
= 200 + 25 x 2.5²
=356.25
Final moment of inertia
I₂ = 200 + 25 X 1.5 X 1.5
= 256.25
b ) We apply law of conservation of momentum
I₁ X ω₁ = I₂ X ω₂
ω₂ = I₁ X ω₁ / I₂
Putting the values

ω₂ = 4.365 rad s⁻¹
c ) Increase in rotational kinetic energy
=1/2 I₂ X ω₂² - 1/2 I₁ X ω₁²
.5 X 256.25 X 4.365² - .5 X 356.25 X 3.14²
= 684.95 J
This energy comes from work done against the centripetal pseudo -force.
1)Typically, atom gain or lose electrons to achieve
I believe the correct answer from the choices listed is option C, a stable electron configuration
2)The formation of an ionic bond involves
I believe the correct answer is A, transfer of electrons since it is electrons that is involved in a chemical reaction.
A = 1*100 = 100 Ns
b = 10 * 12 = 120 Ns
c = 0.5*1000 = 500 Ns
d = 100 * 2 = 200 Ns
a has least momentum
Answer:
8.8 × 10⁻³ g/L
Explanation:
NaF is a strong electrolyte that ionizes according to the following reaction.
NaF(aq) → Na⁺(aq) + F⁻(aq)
Then, the concentration of F⁻ will also be 0.10 M.
In order to find the solubility of PbF₂ (S), we will use an ICE Chart.
PbF₂(s) ⇄ Pb²⁺(aq) + 2 F⁻(aq)
I 0 0.10
C +S +2S
E S 0.10 + 2S
The solubility product (Kps) is:
Kps = 3.6 × 10⁻⁸ = [Pb²⁺].[F⁻]² = S . (0.10 + 2S)²
In the term 0.10 + 2S, 2S is negligible in comparison with 0.10 and we can omit it to simplify calculations.
Kps = 3.6 × 10⁻⁸ = S . (0.10)²
S = 3.6 × 10⁻⁵ M
The molar mass of PbF₂ is 245.20 g/mol. The solubility of PbF₂ in g/L is:
3.6 × 10⁻⁵ mol/L × 245.20 g/mol = 8.8 × 10⁻³ g/L