1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MakcuM [25]
3 years ago
15

This is how sodium appears in the periodic table. An orange box has N a at the center and 11 above. Below it says sodium and bel

ow that 22.99. A blue arrow points to 22.99. The arrow is pointing to sodium’s number of neutrons. number of valence electrons. combined number of neutrons and protons. combined number of electrons and protons.
Physics
2 answers:
Vera_Pavlovna [14]3 years ago
4 0

Answer:

1 valence electrons

11 prontons

12 neutrons

Explanation:

N_{11} = 1s^{2} 2s^{2} 2p^{6} 3s^{1} \\

1 valence electrons

p = 11

11 prontons

A = p + n

A = 22,99 = 23

23 = 11 + n

n =

12 neutrons

Shtirlitz [24]3 years ago
4 0

Answer:

I believe it is answer C.

Explanation:

You might be interested in
Gaseous helium is in thermal equilibrium with liquid helium at 6.4 K. The mass of a helium atom is 6.65 × 10−27 kg and Boltzmann
chubhunter [2.5K]

Answer:

162.78 m/s is the most probable speed of a helium atom.

Explanation:

The most probable speed:

v_{mp}=\sqrt{\frac{2K_bT}{m}}

K_b= Boltzmann’s constant =1.38066\times 10^{-23} J/K

T = temperature of the gas

m = mass of the gas particle.

Given, m = 6.65\times 10^{-27} kg

T = 6.4 K

Substituting all the given values :

v_{mp}=\sqrt{\frac{2\times 1.38066\times 10^{-23} J/K\times 6.4 K}{6.65\times 10^{-27} kg}}

v_{mp}=162.78 m/s

162.78 m/s is the most probable speed of a helium atom.

4 0
3 years ago
In a certain clock, a pendulum of length L1 has a period T1 = 0.95s. The length of the pendulum
gulaghasi [49]

Answer:

Ratio of length will be \frac{L_2}{L_1}=1.108

Explanation:

We have given time period of the pendulum when length is L_1 is T_1=0.95sec

And when length is L_2 time period T_2=1sec

We know that time period is given by

T=2\pi \sqrt{\frac{L}{g}}

So 0.95=2\pi \sqrt{\frac{L_1}{g}}----eqn 1

And 1=2\pi \sqrt{\frac{L_2}{g}}-------eqn 2

Dividing eqn 2 by eqn 1

\frac{1}{0.95}=\sqrt{\frac{L_2}{L_1}}

Squaring both side

\frac{L_2}{L_1}=1.108

8 0
3 years ago
A mass of 10 g of oxygen fill a weighted piston–cylinder device at 20 kPa and 110°C. The device is now cooled until the tempe
mezya [45]

Answer:

The change of the volume of the device during this cooling is 14.3\times10^{-3}\ m^3

Explanation:

Given that,

Mass of oxygen = 10 g

Pressure = 20 kPa

Initial temperature = 110°C

Final temperature = 0°C

We need to calculate the change of the volume of the device during this cooling

Using formula of change volume

\Delta V=V_{2}-V_{1}

\Delta V=\dfrac{mR}{P}(T_{2}-T_{1})

Put the value into the formula

\Delta V=\dfrac{0.3125\times0.0821}{2.0265\times10^{9}}(383-273)

\Delta V=14.297\ L

\Delta V=14.3\times10^{-3}\ m^3

Hence, The change of the volume of the device during this cooling is 14.3\times10^{-3}\ m^3

6 0
3 years ago
You are coasting on your 12-kg bicycle at 13 m/s and a 5.0-g bug splatters on your helmet. The bug was initially moving at 1.5 m
Brut [27]

Answer:

a) Pi,c = 1066 kgm/s

b) Pi,b = 0.0075 kgm/s  

c) ΔV = - 0.0007 m/s

d) ΔV = - 0.0008 m/s

Explanation:

Given:-

- The mass of the bicycle, mc = 12 kg

- The mass of passenger, mp = 70 kg

- The mass of the bug, mb = 5.0 g

- The initial speed of the bicycle, vpi = 13 m/s

- The initial speed of the bug, vbi = 1.5 m/s

Find:-

a.What is the initial momentum of you plus your bicycle?

b.What is the initial momentum of the bug?

c.What is your change in velocity due to the collision the bug?

d.What would the change in velocity have been if the bug were traveling in the opposite direction?

Solution:-

- First we will set our one dimensional coordinate system, taking right to be positive in the direction of bicycle.

- The initial linear momentum (Pi,c) of the passenger and the bicycle would be:

                       Pi,c = vpi* ( mc + mp)

                       Pi,c = 13* ( 12+ 70 )

                       Pi,c = 1066 kgm/s  

- The initial linear momentum (Pi,b) of the bug would be:

                       Pi,b = vbi*mb

                       Pi,b = 0.005*1.5

                       Pi,b = 0.0075 kgm/s  

- We will consider the bicycle, the passenger and the bug as a system in isolation on which no external unbalanced forces are acting. This validates the use of linear conservation of momentum.

- The bicycle, passenger and bug all travel in the (+x) direction after the bug splatters on the helmet.

                       Pi = Pf

                       Pi,c + Pi,b = V*(mb + mc + mp)

Where,    V : The velocity of the (bicycle, passenger and bug) after collision.

                      1066 + 0.0075 = V*( 0.005 + 12 + 70 )

                      V = 1066.0075 / 82.005

                      V = 12.9993 m/s

- The change in velocity is Δv = 13 - 12.9993 =  - 0.00070 m/s      

- If the bug travels in the opposite direction then the sign of the initial momentum of the bug changes from (+) to (-).

- We will apply the linear conservation of momentum similarly.

                      Pi = Pf

                      Pi,c + Pi,b = V*(mb + mc + mp)        

                      1066 - 0.0075 = V*( 0.005 + 12 + 70 )

                      V = 1065.9925 / 82.005

                      V = 12.99911 m/s

- The change in velocity is Δv = 13 - 12.99911 =  -0.00088 m/s      

7 0
3 years ago
Read 2 more answers
A wire along the z axis carries a current of 4.9 A in the z direction Find the magnitude and direction of the force exerted on a
AURORKA [14]

Answer:

<h2>0.069 N, in the X direction</h2>

Explanation:

According to Flemming's left hand rule, it sates that if the first three fingers of the left hand are held mutually at right angles to one another, the fore finger will point in the direction of magnetic field, the middle finger will point in direction of current, while the thumb will point to the direction of force.

Mathematically the law is stated as

F= BIL

given data

Magnetic field B=  0.43T

Current I= 4.9 A

length of conductor L= 3.3cm to meter , 3.3/100=  0.033 m

Applying the formula the force is calculated as

F= 0.43*4.9* 0.033= 0.069 N

According to Flemming's rule the direction of all parameters are mutually perpendicular to one another, then the Force is in the X direction

5 0
3 years ago
Other questions:
  • What do neutrons and protons have in common? How are they different?
    9·2 answers
  • The volume of a gas is reduced when the temperature is decreased
    11·1 answer
  • A car traveling at 23 m/s starts to decelerate steadily. It comes to a complete stop in 5 seconds. What is its acceleration?
    11·1 answer
  • Water drops are spherical because of ?<br> viscosity<br> density<br> polarity<br> surface tension
    14·2 answers
  • Which special effects technique is being used in television weather reports in which meteorologists stand in front of moving map
    6·2 answers
  • Each of two identical objects carries a net charge. The objects are made from conducting material. One object is attracted to a
    14·1 answer
  • FORCE AND DISPLACEMENT AT AN ANGLE A sailor pulls a boat a distance of 30.0 m along a dock using a rope that makes a 25.0° angle
    10·1 answer
  • How are frequency and were peroid related?
    6·1 answer
  • PLEASE HELP!!! I have an electromagnet. If I detach the two wires from the battery and reattach them to the opposite terminals,
    6·1 answer
  • If we rub two neutral objects​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!