Explanation:
an increase in concentration increases the rate of the reaction. This is because there are more reactant particles available which allows for more effective collisions between reactant particles in a given period of time. More effective collisions bring about a faster rate of reaction.
Answer:
0.99 kg O₂
1.9 kg SO₂
Explanation:
Let's consider the reaction between sulfur and oxygen to form sulfur dioxide.
S + O₂ → SO₂
The mass ratio of S to O₂ is 32.07:32.00. The mass of oxygen required to react with 1 kg of sulfur is:
1 kg S × (32.00 kg O₂/32.07 kg S) = 0.998 kg O₂
The mass ratio of S to SO₂ is 32.07:64.07. The mass of sulfur dioxide formed when 1 kg of sulfur is burned is:
1 kg S × (64.07 kg SO₂/32.07 kg S) = 1.99 kg SO₂
A chemical change is characterized of the formation of new substances or a chemical reaction. There are a number of observations that we can see if this type of change happens. One would be the formation of gas bubbles, this indicates that one of the products is a gas. Another observation would be a formation of a precipitate in the solution, it would indicate that the new solid formed is not soluble in the solution. A permanent color change in the solution would also indicate a chemical change because it may be that the new substance that is formed has its own distinct color when in solution.
The freezing point depression is a colligative property which means that it is proportional to the number of particles dissolved.
The number of particles dissolved depends on the dissociation constant of the solutes, when theyt are ionic substances.
If you have equal concentrations of two solutions on of which is of a ionic compound and the other not, then the ionic soluton will contain more particles (ions) and so its freezing point will decrease more (will be lower at end).
In this way you can compare the freezing points of solutions of KCl, Ch3OH, Ba(OH)2, and CH3COOH, which have the same concentration.
As I explained the solution that produces more ions will exhibit the greates depression of the freezing point, leading to the lowest freezing point.
In this case, Ba(OH)2 will produce 3 iones, while KCl will produce 2, CH3OH will not dissociate into ions, and CH3COOH will have a low dissociation constant.
Answer: Then, you can predict that Ba(OH)2 solution has the lowest freezing point.
If two gases with pressures of 2 atm and 3 atm are mixed at constant temperature, the total pressure will be the sum of the two pressures. Therefore the answer is D. 2 atm + 3 atm or 5 atm will be the total pressure of the gas mixture.