The reaction between mercury (Hg) and sulfur (S) to form HgS is:
Hg + S ------------- HgS
Therefore: 1 mole of Hg reacts with 1 mole of S to form 1 mole of HgS
The given mass of Hg = 246 g
Atomic mass of Hg = 200.59 g/mol
# moles of Hg = 246 g/ 200.59 gmol-1 = 1.226 moles
Based on the reaction stoichiometry,
# moles of S that would react = 1.226 moles
Atomic mass of S = 32 g/mol
Therefore, mass of S = 1.226 moles*32 g/mole = 39.23 g
39.2 g of sulfur would be needed to react completely with 246 g of Hg to produce HgS
When PH + POH = 14
∴ POH = 14 -7 = 7
when POH = -㏒[OH-]
7 = -㏒ [OH-]
∴[OH-] = 10^-7
by using ICE table:
Mn(OH)2(s) ⇄ Mn2+ (aq) + 2OH-(aq)
initial 0 10^-7
change +X +2X
Equ X (10^-7 + 2X)
when Ksp = [Mn2+][OH-]^2
when Ksp of Mn(OH)2 = 4.6 x 10^-14
by substitution:
4.6 x 10^-14 = X*(10^-7+2X)^2 by solving this equation for X
∴ X =2.3 x 10-5 M
∴ The solubility of Mn(OH)2 in grams per liter (when the molar mass of Mn(OH)2 = 88.953 g/mol
= 2.3 x10^-5 moles/L * 88.953 g/mol
= 0.002 g/ L
Answer:
Explanation:
The question is not complete, the cmplete question is:
Identify one type of noncovalent bond present in each solid.
1) Table salt (NaCl) 2) Graphite (repeating)
a. hydrogen bonds
b. ionic interactions
c. van der Waals interactions
d. hydrophobic interactions
Answer:
1) Table salt
b. ionic interactions
Ionic bond are formed between atoms with incomplete outermost shell. Some atoms add electrons to their outermost shell to make the shell complete hence making it a negative ion while some atoms loses their electron to make the outermost shell complete becoming a positive ion. In NaCl, sodium (Na) has 1 electron in its outermost shell which it transfers to Cl which has 7 electrons in the outermost shell. Hence after the bonding the outermost shell of the atoms become complete.
2) Graphite
c. Van Der Waals interaction
Van der waal forces are weak interaction between molecules that exist between close atoms. Carbon atoms in graphite planes have covalent bond, these graphite planes are known as graphenes. Bonds between graphenes are very weak and are van der waals forces.
Answer:
Percentage by mass of oxygen = 76.20% (Approx)
Explanation:
Given:
HNO3
H=1, N=14, O=16]
Find:
Percentage by mass of oxygen
Computation:
HNO3
Total mass = 1 + 14 + 3(16)
Total mass = 63
Mass of oxygen = (3)(16) = 48
Percentage by mass of oxygen = [48/63]100
Percentage by mass of oxygen = 76.20% (Approx)