The missing diagram is in the attachments.
Answer: X: positive Y: positive
Explanation: Electric field is a vector quantity, which means it can be represented by a vector arrow: the arrow points in the direction of electric field and its length represents the magnitude at a given location. There are another representation of the electric field called electric field lines, <u>in which the line points away from a positively charged source and towards a negatively charged source</u>. This occurs because it follows a pattern, where the lines points in the direction that a positive test charge would have if it is accelerating on the line.
Analyzing the diagram, it can be observed that the lines are pointing away from both of the charged objects. Therefore, both X and Y are <u>positively charged</u>.
It's a bit of a trick question, had the same one on my homework. You're given an electric field strength (1*10^5 N/C for mine), a drag force (7.25*10^-11 N) and the critical info is that it's moving with constant velocity(the particle is in equilibrium/not accelerating).
<span>All you need is F=(K*Q1*Q2)/r^2 </span>
<span>Just set F=the drag force and the electric field strength is (K*Q2)/r^2, plugging those values in gives you </span>
<span>(7.25*10^-11 N) = (1*10^5 N/C)*Q1 ---> Q1 = 7.25*10^-16 C </span>
Answer:
f = 1 m
Explanation:
The magnification of the lens is given by the formula:

where,
M = Magnification = 4
q = image distance = 5 m
p = object distance = ?
Therefore,

Now using thin lens formula:

<u>f = 1 m</u>
Answer:
They would attract one another
Explanation:
The interaction between two like-charged objects is repulsive. ... Positively charged objects and neutral objects attract each other negatively charged objects and neutral objects attract each other.