Answer:
Neils Bohr determined that electrons inhabit distinct energy levels.
Explanation:
<u>Answer:</u> The value of equilibrium constant for the net reaction is 11.37
<u>Explanation:</u>
The given chemical equations follows:
<u>Equation 1:</u> ![A+2B\xrightarrow[]{K_1} 2C](https://tex.z-dn.net/?f=A%2B2B%5Cxrightarrow%5B%5D%7BK_1%7D%202C)
<u>Equation 2:</u> ![2C\xrightarrow[]{K_2} D](https://tex.z-dn.net/?f=2C%5Cxrightarrow%5B%5D%7BK_2%7D%20D)
The net equation follows:
![D\xrightarrow[]{K} A+2B](https://tex.z-dn.net/?f=D%5Cxrightarrow%5B%5D%7BK%7D%20A%2B2B)
As, the net reaction is the result of the addition of first equation and the reverse of second equation. So, the equilibrium constant for the net reaction will be the multiplication of first equilibrium constant and the inverse of second equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:


Putting values in above equation, we get:

Hence, the value of equilibrium constant for the net reaction is 11.37
PH measures the concentration of hydrogen ions on the log 10 scale. Thus, a pH 5 solution has 2 order of magnitude difference from that of pure water, which has a pH of 7.
Therefore,

. A solution of pH 5 has 100 times more hydrogen ions that that of pure water.
We use concentration calculations. MgCl2(aq) is an ionic compound which will have the releasing of 2 Cl⁻ ions ions in water for every molecule of MgCl2 that dissolves.
MgCl2(s) --> Mg+(aq) + 2 Cl⁻(aq)
[Cl⁻] = 0.64 mol MgCl2/1L × 2 mol Cl⁻ / 1 mol MgCl2 = 1.3 M
The answer to this question is [Cl⁻] = 1.3 M
I believe it is A because the organism always behaves in its environment and heredity.