Answer:
c. As we gain mass, the force of gravity on us increases
Answer:
A and B
Explanation:
The data sets that depict an accelerating object is Data Set A & Data Set B.
The both data sets show that the body is accelerating. Also, they show that the body started from rest (0m/s) at a 0sec.
Data Set A shows a non-constant acceleration which has changing amount of velocity with change in time. While Data Set B shows a constant acceleration which has constant amount of velocity with change in time.
The reactants are on the left and the products are on the right of the equation
(D)
Explanation:
The more massive an object is, the greater is the curvature that they produce on the space-time around it.
Answer:
Explanation:
In the x direction the force will be
½(-w₀)L/2 = -¼w₀L
acting ⅔(L/2) = L/3 below the x axis.
In the y direction the force will be
½(-w₀)L + ½w₀L/2 = -¼w₀L
the magnitude of the resultant will be
F = w₀L √((-¼)² + (-¼)²) = w₀L√⅛
in the direction
θ = arctan(-¼w₀L / -¼w₀L) = 225°
to find the distance, we balance moments
(w₀L√⅛)[d] = ½(w₀)L[⅔L] + ¼w₀L[⅔L/2] - ¼w₀L[L - ⅓L/2]
(√⅛)[d] = ½ [⅔L] + ¼ [⅔L/2] - ¼ [L - ⅓L/2]
(√⅛)[d] = ½[⅔L] + ¼[⅔L/2] - ¼[L - ⅓L/2]
(√⅛)[d] = ⅓L + ⅟₁₂L - ¼L + ⅟₂₄L
(√⅛)[d] = 5L/24
d = 5L/24 / (√⅛)
d = 5√⅛L/3