In addition to possibly releasing harmful chemicals in the environment, mining is considered B. The most dangerous job in the United States.
I think the correct answer from the choices listed above is option A. The rent is an<span> example of a monthly fixed cost for a sandwich shop. It is a fixed cost since you are required to pay for it per month. Hope this answers the question. Have a nice day.</span>
Answer:
sorry I don't really know :P
Explanation:
The sphere’s Electric potential energy is 1.6*
J
Given,
q=6. 5 µc, V=240 v,
We know that sphere’s Electric potential energy(E) = qV=6.5*
=1.6*
J
<h3>Electric potential energy</h3>
The configuration of a certain set of point charges within a given system is connected with the potential energy (measured in joules) known as electric potential energy, which is a product of conservative Coulomb forces. Two crucial factors—its inherent electric charge and its position in relation to other electrically charged objects—can determine whether an object has electric potential energy.
In systems with time-varying electric fields, the potential energy is referred to as "electric potential energy," but in systems with time-invariant electric fields, the potential energy is referred to as "electrostatic potential energy."
A tiny sphere carrying a charge of 6. 5 µc sits in an electric field, at a point where the electric potential is 240 v. what is the sphere’s potential energy?
Learn more about Electric potential energy here:
brainly.com/question/24284560
#SPJ4
The force on the tool is entirely in the negative-y direction.
So no work is done during any moves in the x-direction.
The work will be completely defined by
(Force) x (distance in the y-direction),
and it won't matter what route the tool follows to get anywhere.
Only the initial and final y-coordinates matter.
We know that F = - 2.85 y². (I have no idea what that ' j ' is doing there.)
Remember that 'F' is pointing down.
From y=0 to y=2.40 is a distance of 2.40 upward.
Sadly, since the force is not linear over the distance, I don't think
we can use the usual formula for Work = (force) x (distance).
I think instead we'll need to integrate the force over the distance,
and I can't wait to see whether I still know how to do that.
Work = integral of (F·dy) evaluated from 0 to 2.40
= integral of (-2.85 y² dy) evaluated from 0 to 2.40
= (-2.85) · integral of (y² dy) evaluated from 0 to 2.40 .
Now, integral of (y² dy) = 1/3 y³ .
Evaluated from 0 to 2.40 , it's (1/3 · 2.40³) - (1/3 · 0³)
= 1/3 · 13.824 = 4.608 .
And the work = (-2.85) · the integral
= (-2.85) · (4.608)
= - 13.133 .
-- There are no units in the question (except for that mysterious ' j ' after the 'F',
which totally doesn't make any sense at all).
If the ' F ' is newtons and the 2.40 is meters, then the -13.133 is joules.
-- The work done by the force is negative, because the force points
DOWN but we lifted the tool UP to 2.40. Somebody had to provide
13.133 of positive work to lift the tool up against the force, and the force
itself did 13.133 of negative work to 'allow' the tool to move up.
-- It doesn't matter whether the tool goes there along the line x=y , or
by some other route. WHATEVER the route is, the work done by ' F '
is going to total up to be -13.133 joules at the end of the day.
As I hinted earlier, the last time I actually studied integration was in 1972,
and I haven't really used it too much since then. But that's my answer
and I'm stickin to it. If I'm wrong, then I'm wrong, and I hope somebody
will show me where I'm wrong.