When we look at the moon from the Earth, we always see the same light spots, dark spots, and shapes. It never changes. There could be two possible reasons for this:
-- The moon is a flat disk with some markings on it, and one side of it always faces the Earth.
-- The moon is a round ball with some markings on it, and one side of it always faces the Earth.
Either way, since the same side always faces the Earth, the only way that can happen is if the moon's revolution around the Earth and rotation on its axis both take EXACTLY the same length of time.
Even if they were only one second different, then we would see the moon's whole surface over a long period of time. But we don't. So the moon's rotation and revolution must be EXACTLY locked to the same period of time.
Answer:
Orbital Time Period is 24 years
Explanation:
This can be explained by the definition of time period.
Time period can be defined as the time taken by an object to complete one cycle, here, time taken to complete one revolution.
Also, we know that an extra solar planet which is also called as an exo planet is that planet which is outside our solar system and orbits any star other than our sun. The system in consideration is extra solar system with a single planet.
Therefore, the time taken by the parent star to move about its mass center is the orbital time period that is 24 years.
Answer:
V = 90.51 m/s
Explanation:
From the given information:
Initial speed (u) = 0
Distance (S) = 391 m
Acceleration (a) = 18.9 m/s²
Using the relation for the equation of motion:
v² - u² = 2as
v² - 0² = 2as
v² = 2as


v = 121.57 m/s
After the parachute opens:
The initial velocity = 121.57 m/ss
Distance S' = 332 m
Acceleration = -9.92 m/s²
How fast is the racer can be determined by using the relation:


V = 90.51 m/s