There are several differences between<span> a </span>physical and chemical change<span> in matter or substances. A </span>physical change<span> in a substance doesn't </span>change<span> what the substance is. In a </span>chemical change<span> where there is a </span>chemical<span> reaction, a new substance is formed and energy is either given off or absorbed.</span>
Answer is: the freezing point is 1.63°C and boiling point is 82.01°C.<span>.
1) n(</span><span>nonelectrolyte solute) = 0.656 mol.
</span>m(C₆H₆ - benzene) = 869 g ÷ 1000 g/kg.
m(C₆H₆) = 0.869 kg.<span>
b(solution) = n(</span>nonelectrolyte solute) ÷ m(C₆H₆).<span>
b(solution) = 0.656 mol ÷ 0.869 kg.
b(solution) = 0.754 mol/kg.
2) ΔT = Kf(benzene) · b(solution).
ΔT = 5.12°C/m · 0.754 m.
ΔT = 3.865°C.
Tf = 5.50°C - 3.865°C.
Tf = 1.63°C.
</span>
3) ΔTb = Kb(benzene) · b(solution).
ΔTb = 2.53°C/m · 0.754 m.
ΔTb = 1.91°C.
Tb = 80.1°C + 1.91°C.
Tb = 82.01°C.<span>
</span>
Answer:
All three states of matter (solid, liquid and gas) expand when heated. The atoms themselves do not expand, but the volume they take up does.
When a solid is heated, its atoms vibrate faster about their fixed points. The relative increase in the size of solids when heated is therefore small. Metal railway tracks have small gaps so that when the sun heats them, the tracks expand into these gaps and don’t buckle.
Liquids expand for the same reason, but because the bonds between separate molecules are usually less tight they expand more than solids. This is the principle behind liquid-in-glass thermometers. An increase in temperature results in the expansion of the liquid which means it rises up the glass.
Molecules within gases are further apart and weakly attracted to each other. Heat causes the molecules to move faster, (heat energy is converted to kinetic energy) which means that the volume of a gas increases more than the volume of a solid or liquid.
However, gases that are contained in a fixed volume cannot expand - and so increases in temperature result in increases in pressure.:
Answer:
see explaination
Explanation:
We are given the (R)-3-bromo-2,3-dimethylpentane and asking to draw the curved arrow which is the showing the mechanism for first-order substitution and first-order elimination reactions. We know the formation of carbocation is the rate determining step in the first-order substitution and first-order elimination reactions.
So in the (R)-3-bromo-2,3-dimethylpentane there is –Br gets removed and formed the tertiary carbocation which is more stable, so the curved arrows in Box 1 to depict the flow of electrons and intermediate in Box 2.
Check attachment
C6H9MnO6.2(H2O)
Here is the formula hope it helps.