1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SVETLANKA909090 [29]
3 years ago
10

Identify the advantages of using 6 tube passes instead of just 2 of the same diameter in shell-and-tube heat exchanger.What are

the advantages and disadvantages of using 6 tube passes instead of just 2 of the same diameter?
Engineering
1 answer:
liq [111]3 years ago
5 0

Answer:

Please check explanation for answer

Explanation:

Here, we are concerned with stating the advantages and disadvantages  of using a 6 tube passes instead of a 2 tube passes of the same diameter:

<u>Advantages</u>

* By using a 6 tube passes diameter, we are increasing the surface area of the heat transfer surface

* As a result of increasing the heat transfer surface area, the rate of heat transfer automatically increases too

            Thus, from the above, we can conclude that the heat transfer rate of a 6 tube passes is higher than that of a 2 tube passes of the same diameter.

<u>Disadvantages</u>

* They are larger in size and in weight when compared to a 2 tube passes of the same diameter and therefore does not find use in applications where space conservation is quite necessary.

* They are more expensive than the 2 tube passes of the same diameter and thus are primarily undesirable in terms of  manufacturing costs

You might be interested in
1. (5 pts) An adiabatic steam turbine operating reversibly in a powerplant receives 5 kg/s steam at 3000 kPa, 500 °C. Twenty per
KiRa [710]

Answer:

temperature of first extraction 330.8°C

temperature of second extraction 140.8°C

power output=3168Kw

Explanation:

Hello!

To solve this problem we must use the following steps.

1. We will call 1 the water vapor inlet, 2 the first extraction at 100kPa and 3 the second extraction at 200kPa

2. We use the continuity equation that states that the mass flow that enters must equal the two mass flows that leave

m1=m2+m3

As the problem says, 20% of the flow represents the first extraction for which 5 * 20% = 1kg / s

solving

5=1+m3

m3=4kg/s

3.

we find the enthalpies and temeperatures in each of the states, using thermodynamic tables

Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)  

through prior knowledge of two other properties

4.we find the enthalpy and entropy of state 1 using pressure and temperature

h1=Enthalpy(Water;T=T1;P=P1)

h1=3457KJ/kg

s1=Entropy(Water;T=T1;P=P1)

s1=7.234KJ/kg

4.

remembering that it is a reversible process we find the enthalpy and the temperature in the first extraction with the pressure 1000 kPa and the entropy of state 1

h2=Enthalpy(Water;s=s1;P=P2)

h2=3116KJ/kg

T2=Temperature(Water;P=P2;s=s1)

T2=330.8°C

5.we find the enthalpy and the temperature in the second extraction with the pressure 200 kPav y the entropy of state 1

h3=Enthalpy(Water;s=s1;P=P3)

h3=2750KJ/kg

T3=Temperature(Water;P=P3;s=s1)

T3=140.8°C

6.

Finally, to find the power of the turbine, we must use the first law of thermodynamics that states that the energy that enters is the same that must come out.

For this case, the turbine uses a mass flow of 5kg / s until the first extraction, and then uses a mass flow of 4kg / s for the second extraction, taking into account the above we infer the following equation

W=m1(h1-h2)+m3(h2-h3)

W=5(3457-3116)+4(3116-2750)=3168Kw

7 0
3 years ago
Calculate the volume of a hydraulic accumulator capable of delivering 5 liters of oil between 180 and 80 bar, using as a preload
Vinil7 [7]

Answer:

1) V_o = 10 liters

2) V_o = 12.26 liters

Explanation:

For isothermal process n =1

V_o =\frac{\Delta V}{(\frac{p_o}{p_1})^{1/n} -(\frac{p_o}{p_2})^{1/n}}

V_o  = \frac{5}{[\frac{72}{80}]^{1/1} -[\frac{72}{180}]^{1/1}}

V_o = 10 liters

calculate pressure ratio to determine correction factor

\frac{p_2}{p_1} =\frac{180}{80} = 2.25

correction factor for calculate dpressure ration  for isothermal process is

c1 = 1.03

actual \ volume = c1\times 10 = 10.3 liters

b) for adiabatic process

n =1.4

volume of hydraulic accumulator is given as

V_o =\frac{\Delta V}{[\frac{p_o}{p_1}]^{1/n} -[\frac{p_o}{p_2}]^{1/n}}

V_o  = \frac{5}{[\frac{72}{80}]^{1/1.4} -[\frac{72}{180}]^{1/1.4}}

V_o = 12.26 liters

calculate pressure ratio to determine correction factor

\frac{p_2}{p_1} =\frac{180}{80} = 2.25

correction factor for calculate dpressure ration  for isothermal process is

c1 = 1.15

actual \volume = c1\times 10 = 11.5 liters

8 0
3 years ago
A reversible compression of 1 mol of an ideal gas in a piston/cylinder device results in a pressure increase from 1 bar to P2 an
Mashutka [201]

Answer:

attached below

Explanation:

6 0
3 years ago
a) A total charge Q = 23.6 μC is deposited uniformly on the surface of a hollow sphere with radius R = 26.1 cm. Use ε0 = 8.85419
dusya [7]

Answer:

(a) E = 0 N/C

(b) E = 0 N/C

(c) E = 7.78 x10^5 N/C

Explanation:

We are given a hollow sphere with following parameters:

Q = total charge on its surface = 23.6 μC = 23.6 x 10^-6 C

R = radius of sphere = 26.1 cm = 0.261 m

Permittivity of free space = ε0 = 8.85419 X 10−12 C²/Nm²

The formula for the electric field intensity is:

E = (1/4πεo)(Q/r²)

where, r = the distance from center of sphere where the intensity is to be found.

(a)

At the center of the sphere r = 0. Also, there is no charge inside the sphere to produce an electric field. Thus the electric field at center is zero.

<u>E = 0 N/C</u>

(b)

Since, the distance R/2 from center lies inside the sphere. Therefore, the intensity at that point will be zero, due to absence of charge inside the sphere (q = 0 C).

<u>E = 0 N/C</u>

(c)

Since, the distance of 52.2 cm is outside the circle. So, now we use the formula to calculate the Electric Field:

E = (1/4πεo)[(23.6 x 10^-6 C)/(0.522m)²]

<u>E = 7.78 x10^5 N/C</u>

4 0
3 years ago
If he wants to keep the height the same, what could the other dimensions be for him to get the volume he wants?
Fiesta28 [93]

tbm queria saber essa pergunta

8 0
3 years ago
Other questions:
  • If the specific surface energy for aluminum oxide is 0.90 J/m2 and its modulus of elasticity is (393 GPa), compute the critical
    11·1 answer
  • Write a modular program that finds the equation, area, and circumference of a circle, given the coordinates of the center of the
    11·1 answer
  • How does a carburetor work?
    7·1 answer
  • A common way of measuring the thermal conductivity of a material is to sandwich an electric thermofoil heater between two identi
    9·1 answer
  • 2. What is an important aspect of the American free enterprise system that encourages people to
    10·2 answers
  • It is possible to have liquid water at 200°C. a)-True b)- False
    14·1 answer
  • Rosbel or Janette lol baakkaaa
    11·2 answers
  • Select the best answer for the question.
    11·2 answers
  • The two major forces opposing the motion of a vehicle moving on a level road are the rolling resistance of the tires, Fr, and th
    7·1 answer
  • Select the correct answer.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!