Answer:
d = 68.5 x 10⁻⁶ m = 68.5 μm
Explanation:
The complete question is as follows:
An optical engineer needs to ensure that the bright fringes from a double-slit are 15.7 mm apart on a detector that is 1.70m from the slits. If the slits are illuminated with coherent light of wavelength 633 nm, how far apart should the slits be?
The answer can be given by using the formula derived from Young's Double Slit Experiment:
where,
d = slit separation = ?
λ = wavelength = 633 nm = 6.33 x 10⁻⁷ m
L = distance from screen (detector) = 1.7 m
y = distance between bright fringes = 15.7 mm = 0.0157 m
Therefore,
<u>d = 68.5 x 10⁻⁶ m = 68.5 μm</u>
Ans: Time <span>taken by a pulse to travel from one support to the other
= 0.348s</span>
Explanation:First you need to find out the speed of the wave.
Since
Speed = v =
Where
T = Tension in the cord = 150N
μ = Mass per unit length = mass/Length = 0.65/28 = 0.0232 kg/m
So
v =
= 80.41 m/s
Now the time-taken by the wave = t = Length/speed = 28/80.41=
0.348s
Since power = work done/time, 60= work done/120, work done = 120*60 = 7200. So,work done = 7200N (Newton).
I'm not sure if you're supposed to convert the seconds to time.
Answer:
i think it is iron
Explanation:
its the only one that makes sense to me
Answer:
Explanation:
if
and g=9.81 m/s2=32.16 ft/s2
and
W=m*g
we can just replace de mass and gravity and we have