Rocket thrust equation
= ( mass flow rate of fuel burnt ) X (Velocity of gas ejected ) + ( Exit Pressure - Outdoor Pressure ) X ( Area of exhaust )
In this case, we can assume the exit pressure = outdoor pressure and since area of exhaust is not given, it can be assumed to be negligible.
In this case, by Newton 3rd’s law,
Force exerted by gas on rocket
= Force exerted by rocket on gas
= (10kg/s) X (5 x 10^3 m/s)
= 5 x 10^4 N
Answer:
1/4
Explanation:
Mechanical Advantage = Load/Effort
Given
Effort applied = 24N
Load = 6N
Substitute
MA = 6/24
MA = 1/4
Hence the mechanical advantage is 1/4
Use the inverse square law, thus if you move a distance of 3m away, the sound intensity decrease by 1/3^2= 1/9
I believe the correct answer from the choices listed above is the last option. If the volatility of X is higher than that of Y, then <span>Y’s molecules experience stronger London dispersion forces than X’s molecules. All molecules has london dispersion forces. Also, the stronger the bond, the harder it is to volatilize. Hope this answers the question.</span>
Anything that is made of atoms I believe. Matter is basically everything concrete that is not energy