1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crazy boy [7]
3 years ago
14

A plane traveled west for 4.0 hours and covered a distance of 4,400 meters what’s the velocity

Physics
1 answer:
tatuchka [14]3 years ago
8 0

0.31m/s

Explanation:

Given parameters:

Time of travel = 4hrs = 4 x 60 x 60 = 14400s

Displacement  = 4400m due west

Unknown:

Velocity = ?

Solution:

Velocity is defined as the displacement  per unit of time. It is expressed in m/s or km/hr:

     Velocity =  \frac{displacement}{time}

     Velocity =   \frac{4400}{14400} = 0.31m/s

Learn more:

Velocity brainly.com/question/10883914

#learnwithBrainly

You might be interested in
What is the name for a star and planets held together by gravity? A. solar system B. galaxy C. black hole D. supernova
DaniilM [7]
These answers aren´t valid .

The correct answer will be:

Planetary system.
5 0
3 years ago
Hallar la energía mecánica de un pendulo , en un punto de su oscilación donde la energía cinética es 0,39 J y en ese mismo punto
iris [78.8K]

Answer:

E = 0,39 + 0,59 = 0,98 J

Explanation:

7 0
3 years ago
A thin spherical spherical shell of radius R which carried a uniform surface charge density σ. Write an expression for the volum
ozzi

Answer:

Explanation:

From the given information:

We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then

The volume charge distribution relates to the radial direction at r = R

∴

\rho (r) \  \alpha  \  \delta (r -R)

\rho (r) = k \  \delta (r -R) \ \  at \ \  (r = R)

\rho (r) = 0\ \ since \ r< R  \ \ or  \ \ r>R---- (1)

To find the constant k, we  examine the total charge Q which is:

Q = \int \rho (r) \ dV = \int \sigma \times dA

Q = \int \rho (r) \ dV = \sigma \times4 \pi R^2

∴

\int ^{2 \pi}_{0} \int ^{\pi}_{0} \int ^{R}_{0} \rho (r) r^2sin \theta  \ dr \ d\theta \ d\phi = \sigma \times 4 \pi R^2

\int^{2 \pi}_{0} d \phi* \int ^{\pi}_{0} \ sin \theta d \theta * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

(2 \pi)(2) * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

Thus;

k * 4 \pi  \int ^{R}_{0}  \delta (r -R) * r^2dr = \sigma \times  R^2

k * \int ^{R}_{0}  \delta (r -R)  r^2dr = \sigma \times  R^2

k * R^2= \sigma \times  R^2

k  =   R^2 --- (2)

Hence, from equation (1), if k = \sigma

\mathbf{\rho (r) = \delta* \delta (r -R)  \ \  at   \ \  (r=R)}

\mathbf{\rho (r) =0 \ \  at   \ \  rR}

To verify the units:

\mathbf{\rho (r) =\sigma \ *  \ \delta (r-R)}

↓         ↓            ↓

c/m³    c/m³  ×   1/m            

Thus, the units are verified.

The integrated charge Q

Q = \int \rho (r) \ dV \\ \\ Q = \int ^{2 \ \pi}_{0} \int ^{\pi}_{0} \int ^R_0 \rho (r) \ \ r^2 \ \  sin \theta  \ dr \ d\theta \  d \phi  \\ \\  Q = \int ^{2 \pi}_{0} \  d \phi  \int ^{\pi}_{0} \ sin \theta  \int ^R_{0} \rho (r) r^2 \ dr

Q = (2 \pi) (2) \int ^R_0 \sigma * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  \int ^R_0  * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  *R^2    since  ( \int ^{xo}_{0} (x -x_o) f(x) \ dx = f(x_o) )

\mathbf{Q = 4 \pi R^2  \sigma  }

6 0
3 years ago
a mass of 1.00 kg of water at temperature T is poured from a height of 0.100 km into a vessel containing water of the same tempe
Mariana [72]

Answer:

1.34352 kg

Explanation:

m_w = Mass of water falling = 1 kg

h = Height of fall = 0.1 km

\Delta T = Change in temperature = 0.1

c = Specific heat of water = 4186 J/kg K

g = Acceleration due to gravity = 9.81 m/s²

m_v = Mass of water in the vessel

Here the potential energy will balance the internal energy

m_wgh=m_wc\Delta T+m_vc\Delta T\\\Rightarrow m_v=\dfrac{m_wgh-m_wc\Delta T}{c\Delta T}\\\Rightarrow m_v=\dfrac{m_wgh}{c\Delta T}-m_w\\\Rightarrow m_v=\dfrac{1\times 9.81\times 100}{4186\times 0.1}-1\\\Rightarrow m_v=1.34352\ kg

Mass of the water in the vessel is 1.34352 kg

6 0
3 years ago
Which has more inertia a shopping cart full or groceries or an empty shopping cart?
morpeh [17]
I think that  the shopping cart full of groceries has more inertia because it is the one with more tendency to do nothing or be still.
5 0
3 years ago
Other questions:
  • When you spill a few drops of soup or milk on a pale-blue Gas game when cooking, the color of the flame changes to a mixture of
    14·1 answer
  • you mix two ionic Solutions after you mix them in a beaker the solution turns cloudy after 5 minutes the solution becomes clear
    8·1 answer
  • A wave that consists of changing electric and magnetic fields and that can travel through empty space is a(n) __________________
    12·1 answer
  • a. Convert 21.0 cm to inches. Show your dimensional analysis setup. b. Convert 29.7 cm to inches. Show your dimensional analysis
    11·1 answer
  • Adam wants to decrease his current weight, so he should?
    11·2 answers
  • A push or pull that causes an object's motion to change is called _____
    11·1 answer
  • Rowan is walking in a shallow, clear bay, in still water just over her knees. When she looks down at her feet in the sand, she n
    10·1 answer
  • Preparing an Accounts Payable Schedule Pilsner Inc. purchases raw materials on account for use in production. The direct materia
    7·2 answers
  • A 1250-kg car moves at 20.0 m/s. How much work must be done on the car to increase its speed to 30.0 m/s.
    11·1 answer
  • A student decides to give his bicycle a tune up. He flips it upside down (so there's no friction with the ground) and applies a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!