Answer:
Its called the mean of the data.
Explanation:
Answer: This option is incorrect: <span>B. Covalent compounds are held together by much stronger interparticle forces than are ionic compounds.
Justification:
Ionic bonds, held by ionic compounds, are much stronger than covalent bonds, held by covalent compounds.
In ionic bonds one element yields one or more electrons forming a cation (a positively charged ion) and the other element accepts the electrons forming an anion (a negatively charged ion).
The anion and the cation are electrostatically atracted by each other. This electrostatic atraction force, named ionic bond, is very strong.
As result of this, the ionic compounds form strong crystals with high boiling and fusion points. A good example of this the sodium chloride, formed by the union of cation Na(+) and anion Cl(-).
The covalent bonds are result of sharing electrons and do not form ions. This bond is weaker than the ionic bond.
</span>
The heat energy that causes most of the water evaporate on the surface of the Earth is the Sun. Which provides earth most of the thermal energy into the hydro-thermodynamic system on Earth.
{{Sun}}
Answer:
Explanation:
(a) Part 1:
reaction. This is a nucleophilic substitution reaction in which we have two steps. Firstly, chlorine, a good leaving group, leaves the carbon skeleton to form a relatively stable secondary carbocation. This carbocation is then attacked by the hydroxide anion, our nucleophile, to form the final product.
To summarize, this mechanism takes places in two separate steps. The mechanism is attached below.
Part 2:
reaction. This is a nucleophilic substitution reaction in which we have one step. Our nucleophile, hydroxide, attacks the carbon and then chlorine leaves simultaneously without an intermediate carbocation being formed.
The mechanism is attached as well.
(b) The rate determining step is the slow step. Formation of the carbocation has the greatest activation energy, so this is our rate determining step for
. For
, we only have one step, so the rate determining step is the attack of the nucleophile and the loss of the leaving group.
A. cyclohexyne is the answer