There are:
3.41 moles of C
4.54 moles of H
3.40 moles of O.
Why?
To solve the problem, the first thing that we need to do is to write the chemical formula of the ascorbic acid.

Now, we know that there are 100 grams of the compound, so, the masses of each element will represent the percent in the compound.
We have that:

To know the percent of each element, we need to to the following:

So, we know that for the 100 grams of the compound, there are:
40.92 grams of C
4.58 grams of H
54.49 grams of O
We know the molecular masses of each element:

Now, to calculate the number of moles of each element, we need to divide the mass of each element by the molecular mass of each element:

Hence, we have that there are 3.41 moles of C, 4.54 moles of H, and 3.40 moles of O.
Have a nice day!
Radio active decay reactions follow first order rate kinetics.
a) The half life and decay constant for radio active decay reactions are related by the equation:



Where k is the decay constant
b) Finding out the decay constant for the decay of C-14 isotope:



c) Finding the age of the sample :
35 % of the radiocarbon is present currently.
The first order rate equation is,
![[A] = [A_{0}]e^{-kt}](https://tex.z-dn.net/?f=%20%5BA%5D%20%3D%20%5BA_%7B0%7D%5De%5E%7B-kt%7D%20%20%20)
![\frac{[A]}{[A_{0}]} = e^{-kt}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BA%5D%7D%7B%5BA_%7B0%7D%5D%7D%20%3D%20e%5E%7B-kt%7D%20%20)


t = 7923 years
Therefore, age of the sample is 7923 years.
Fe needs to have a positive charge of +3 to balance out -3 Cl