Answer:
16.9000000000000001 J
Explanation:
From the given information:
Let the initial kinetic energy from point A be
= 1.9000000000000001 J
and the final kinetic energy from point B be
= ???
The charge particle Q = 6 mC = 6 × 10⁻³ C
The change in the electric potential from point B to A;
i.e. V_B - V_A = -2.5 × 10³ V
According to the work-energy theorem:
-Q × ΔV = ΔK





I think this is correct, but I am not entirely certain.
Find the force constant of the spring:
F = - KX
(0 - 62.4) = -K(0.172m)
-362.791 = -K
362.791 N/m = K
Find the work done in stretching the spring:
W = (1/2)KX
W = (1/2)(362.791)(0.172m)
W = 31.2 J
Answer:
The force on one side of the plate is 3093529.3 N.
Explanation:
Given that,
Side of square plate = 9 m
Angle = 60°
Water weight density = 9800 N/m³
Length of small strip is


The area of strip is

We need to calculate the force on one side of the plate
Using formula of pressure


On integrating




Hence, The force on one side of the plate is 3093529.3 N.
Answer:
K_a = 8,111 J
Explanation:
This is a collision exercise, let's define the system as formed by the two particles A and B, in this way the forces during the collision are internal and the moment is conserved
initial instant. Just before dropping the particles
p₀ = 0
final moment
p_f = m_a v_a + m_b v_b
p₀ = p_f
0 = m_a v_a + m_b v_b
tells us that
m_a = 8 m_b
0 = 8 m_b v_a + m_b v_b
v_b = - 8 v_a (1)
indicate that the transfer is complete, therefore the kinematic energy is conserved
starting point
Em₀ = K₀ = 73 J
final point. After separating the body
Em_f = K_f = ½ m_a v_a² + ½ m_b v_b²
K₀ = K_f
73 = ½ m_a (v_a² + v_b² / 8)
we substitute equation 1
73 = ½ m_a (v_a² + 8² v_a² / 8)
73 = ½ m_a (9 v_a²)
73/9 = ½ m_a (v_a²) = K_a
K_a = 8,111 J