Answer: The gas generated by two antacid tablets has a smaller volume.
Explanation:
Since the antiacid is the limiting reagent, we know that the more tablets there are, the more gas there will be.
This means that there will be more gas generated by the four antiacid tablets when compared to the two antiacid tablets, which gives us that the gas generated by the two antiacid tablets has a smaller volume.
Answer:
(a) The lewis structure for methylisocyanate is in the attached.
(b) The carbonyl carbon have an sp² hybridization
(c) The nitrogen have an sp² hybridization?
Explanation:
(a) The lewis structure for methylisocyanate has the nitrogen with one lone pair and the oxygen with two lone pairs.
(b) The carbonyl carbon form double bond with the oxygen causing to form three hybrid orbitals sp².
The Nitrogen also forms a double bond with the carbon having an sp² hybridization too.
Answer:
See image attached
Explanation:
a)
The full reaction mechanism of step 1 was obtained from Bartleby and attached to this answer. The steps involved in the reaction are:
1) Loss of Br- and formation of a carbocation
2) Attack of CH3CN on the carbocation
4) Formation of a quaternary nitrogen intermediate
5) Attack of water on the quaternary nitrogen intermediate
6) Loss of the water molecule
5) Formation of the amide product
b)
i) sodium hydroxide
ii) HCl
Answer:
Liquid and gas
Explanation:
Liquid and gas are the phases of matter that take the shape of container.
This is very simple to imagine, if we have a piece of rock and we put it in a container, it will not take the shape of container as it already has a definite shape and volume. Liquid when put in a container takes the shape of container but varies in volume as per the container.
However, the gas phases is the phase of matter that perfectly takes the shape of container and occupies all the volume of container as well.
If we recall Dalton's Law of Partial Pressures we can see that the pressure exerted by the gas components in a container is same like the pressure exerted by the gas alone. These partial pressures of the component of gas combine in such a way that they exert total pressure equal to the constituents' pressure on the container. This way gases occupy all the volume of a container and take the shape of a container they're placed in.
Hope it help!
Answer:
ZnCO3 + 2HClO4 = Zn(ClO4)2 + CO2 + H2O
Explanation:
ZnCO3 + 2HClO4 = Zn(ClO4)2 + H2CO3
ZnCO3 + 2HClO4 = Zn(ClO4)2 + CO2 + H2O