The equilibrium will shift to the left or the backward reaction since addition of <span>CH3COONa will add more CH3COO- ions to the solution. The formation of reactants are promoted.</span>
Answer:
B: increase.
Explanation:
When we are considering two gases A and B in a container at room temperature .
We have to find the change on rate of reaction when the number of molecules of gases A is doubled
Let [A]=a and [B]=b
A+B
product
Rate of reaction
![R_1=k[A][B]=kab](https://tex.z-dn.net/?f=R_1%3Dk%5BA%5D%5BB%5D%3Dkab)
We know that concentration is increases with increase in number of moles
When the number of molecules of gases A is doubled then concentration of gases A increases.
Therefore ,[A]=2a
Rate of reaction


Hence, the rate of reaction is 2 times the initial rate of reaction.Therefore, the rate of reaction will increase when the number of molecules of gases A is doubled.
Answer: B: increase.
The number of electrons in an atom's outermost valence shell governs its bonding behaviour. Elements whose atoms have the same number of valence electrons are grouped together in the Periodic Table. ... Nonmetals tend to attract additional valence electrons to form either ionic or covalent bonds.
Answer:
Q9. The independent variable in this experiment is the fertilizer. It is independent because she manipulating the variable to compare the growth.
Q10. The dependent variable in this experiment is the amount of growth of the corn. It is this because the growth depends on what the scientist did on the corn.
Q11. The variable controlled in this experiment is the amount of sun and water. These two variables never change so this is why it is the control.
Explanation:
Answer: Step 1, Isomerase.
Explanation:
Form the version of palmitic acid in the step one by changing the double bond within alpha and beta carbon by Isomerase.
B and C are Isomers, the molecule only differ in configuration.