B (9.81 m/s^2)
Speed no, because acceleration isn't 0
Velocity, pretty much same as speed
Distance no, because it's getting closer
To find
we need to use vector addition and use the x and y components. First we subtract vector 2 from vector 5 which results in a vector with a length of 3 pointing directly east, then we use the distance formula to find the length of the net force
which gives
. We now have a magnitude but we also need a direction, since vector 4 and vector 5 are perpendicular. Using
where tan^-1(y/x) we get an angle of 53 degrees. The resultant force vector is 5 distance with an angle of 53 degrees north east.
The answer would be point A.
Hope this helped you.
<span>Place a test charge in the middle. It is 2cm away from each charge.
The electric field E= F/Q where F is the force at the point and Q is the charge causing the force in this point.
The test charge will have zero net force on it. The left 30uC charge will push it to the right and the right 30uC charge will push it to the left. The left and right force will equal each other and cancel each other out.
THIS IS A TRICK QUESTION.
THe electric field exactly midway between them = 0/Q = 0.
But if the point moves even slightly you need the following formula
F= (1/4Piε)(Q1Q2/D^2)
Assume your test charge is positive and make sure you remember two positive charges repel, two unlike charges attract. Draw the forces on the test charge out as vectors and find the magnetude of the force, then divide by the total charge to to find the electric field strength:)</span>
Answer:
because the mass of the copper is higher than the mass of the gold.
Explanation: