The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
- The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>
<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;

Which gives;


F₀ = T₂·sin(37°)
Which gives;

<u />
Learn more about equilibrium of forces here:
brainly.com/question/6995192
I believe it’s the mass of the box but I don’t no if I’m right
Hope this helped
Answer:
heat energy is used in boiling water and to make steam at power stations
Explanation:
Mechanical energy is made when something is moved. The energy that is moving is kinetic. And potential energy is stored energy. Mechanical energy can be used to store energy and to cause moving energy. For instance: a slingshot. Pulling back the band creates potential energy and releasing it creates kinetic energy.
If you write down the formula for friction, you will get an answer.
Ff = u * N Where N is a push down force that an object experiences.
u (mu) is a constant and has no units
It may not be accelerating and still experience friction. A is not correct.
Color and Density will not affect the frictional force. B is not so.
Buoyant forces are a different thing altogether. Generally friction has nothing to do with them. C is incorrect.
The last one is your answer. Technically mg should be the answer and not mass, but the second part is correct.