1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anton [14]
2 years ago
9

If two waves are out of phrase with each other and are moving through the same medium what will they undergo

Physics
1 answer:
zvonat [6]2 years ago
4 0

some form of destructive interference. if phase is 180 degrees out, destructive = darkfringe or quiet in sound

You might be interested in
What current is produced with a voltage of 6.0 V and a resistance of 445 ohms?17.4 mA
san4es73 [151]

Answer:

i Believe its 17.4 mA

4 0
2 years ago
Compare the results of applying the acceleration equation in the following 2 cases : (1) an object that goes from 0 to 10 m/s in
erastovalidia [21]

2oeuhehdhfhdhfhdjdjdndndjjfjdjfjgfjfjjrjrj

8 0
3 years ago
Two particles oscillate in simple harmonic motion along a common straight-line segment of length 1.0 m. Each particle has a peri
igor_vitrenko [27]

Answer:

a) the particles are <em>0.217 m </em>apart

b) <em>the particles are moving in the same direction</em>.

Explanation:

a) The amplitude of the oscillations is A/2 and the period of each particle is

T = 1.5 s however, they differ by a phase of π/6 rad. Let the phase of the first particle be zero so that the phase of the second particle is π/6. So we can write the coordinates of each of the particles as,

x₁ = A/2 cos(ωt)

x₂ = A/2 cos(ωt + π/6)

we can write the angular frequency ω, as

ω = 2π / T

so,

x₁ = A/2 cos(2π / T)

x₂ = A/2 cos(2π / T + π/6)

Thus, the coordinates of the particles at t = 0.45 s are,

x₁ = A/2 cos((2π × 0.45) / 1.5)) = -0.155 A

x₂ = A/2 cos((2π × 0.45) / 1.5) + π/6) = -0.372 A

Their separation at that time is, therefore,

Δx = x₁ - x₂

    = -0.155 A + 0.372 A

    = 0.217 A

since A = 1 m

Thus,

<em>Δx  = 0.217 m</em>

<em></em>

<em></em>

b) In order to find their directions, we must take the derivatives at t = 0.45 s.

Therefore,

v₁ = dx₁ / dt

   = (-πA / T) sin(2πt / T)

   = -(π(1) / 1.5) sin(2π(0.45) / 1.5)

   = -1.99

and,

v₂ = dx₂ / dt

   = (-πA / T) sin((2πt / T) + π/6)

   = -(π(1) / 1.5) sin((2π(0.45) / 1.5) + π/6)

   = -1.40

Since both v₁ and v₂ are negative, this shows that <em>the particles are moving in the same direction</em>.

6 0
3 years ago
A cheetah can run at approximately 100 km/hr and a gazelle at 80 km/hr. If both animals are running at full speed, with a gazell
zimovet [89]
The cheetah's speed is 100x and The gazelle's speed is 80x + 70. Set the two equations equal to each other: 100x = 80x +70 (then subtract 80x from both sides). 20x = 70 (then divide by 20). X =3.5. The cheetah catches the gazelle after 3.5
6 0
3 years ago
A solenoid 25.0 cmcm long and with a cross-sectional area of 0.550 cm^2 contains 460 turns of wire and carries a current of 90.0
ankoles [38]

Answer:

a.  B = 0.20T

b.  u = 17230.6 J/m³

c.  E = 0.236J

d.  L = 5.84*10^-5 H

Explanation:

a. In order to calculate the magnetic field in the solenoid you use the following formula:

B=\frac{\mu_o n i}{L}               (1)

μo: magnetic permeability of vacuum = 4π*10^-7 T/A

n: turns of the solenoid = 460

L: length of the solenoid = 25.0cm = 0.25m

i: current  = 90.0A

You replace the values of the parameters in the equation (1):

B=\frac{(4\pi*10^{-7}T/A)(460)(90.0A)}{0.25m}=0.20T

The magnetic field in the solenoid is 0.20T

b. The magnetic permeability of air is approximately equal to the magnetic permeability of vacuum. To calculate the energy density in the solenoid you use:

u=\frac{B^2}{2\mu_o}=\frac{(0.20T)^2}{2(4\pi*10^{-7}T/A)}=17230.6\frac{J}{m^3}

The energy density is 17230.6 J/m³

c. The total energy contained in the solenoid is:

E=uV           (2)

V is the volume of the solenoid and is calculated by assuming the solenoid as a perfect cylinder:

V=AL

A: cross-sectional area of the solenoid = 0.550 cm^2 = 5.5*10^-5m^2

V=(5.5*10^{-5}m^2)(0.25m)=1.375*10^{-5}m^3

Then, the energy contained in the solenoid is:

E=(17230.6J/m^3)(1.375*10^{-5}m^3)=0.236J

The energy contained is 0.236J

d. The inductance of the solenoid is calculated as follow:

L=\frac{\mu_o N^2 A}{L}=\frac{(4\pi*10^{-7}T/A)(460)^2(5.5*10^{-5}m^2)}{0.25m}\\\\L=5.84*10^{-5}H

The inductance of the solenoid is 5.84*10^-5 H

3 0
3 years ago
Other questions:
  • Which statement about human behavior would William James support
    10·1 answer
  • Two ice boats (one of mass m, one of mass 2m) hold a race on a frictionless, horizontal, frozen lake. Bath ice boats start at re
    5·1 answer
  • What are three basic conditions for a hurricane to form
    11·1 answer
  • You construct a circuit containing some component C, along with other circuit elements. You want to simultaneously measure the c
    12·1 answer
  • what is the answer to the question "Two boys of equal mass go up to the first floor of a building. Boy A takes the stairs, boy B
    10·1 answer
  • Mr. Hershman has purchased a farm that is in the shape of a rectangle. The dimensions of the piece of land are 4.3 km by 4.85 km
    14·1 answer
  • Funtions of a fuse box​
    15·1 answer
  • The diagram shows a sealed container, which
    15·2 answers
  • Which choice best explains the definition of a variable?
    14·1 answer
  • Please help me with this question​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!