Answer:
you would have to stand 6 ft back
Explanation:
The sound wave will have traveled 2565 m farther in water than in air.
Answer:
Explanation:
It is known that distance covered by any object is directly proportional to the velocity of the object and the time taken to cover that distance.
Distance = Velocity × Time.
So if time is kept constant, then the distance covered by a wave can vary depending on the velocity of the wave.
As we can see in the present case, the velocity of sound wave in air is 343 m/s. So in 2.25 s, the sound wave will be able to cover the distance as shown below.
Distance = 343 × 2.25 =771.75 m
And for the sound wave travelling in fresh water, the velocity is given as 1483 m/s. So in a time interval of 2.25 s, the distance can be determined as the product of velocity and time.
Distance = 1483×2.25=3337 m.
Since, the velocity of sound wave travelling in fresh water is greater than the sound wave travelling in air, the distance traveled by sound wave in fresh water will be greater.
Difference in distance covered in water and air = 3337-772 m = 2565 m
So the sound wave will have traveled 2565 m farther in water than in air.
Answer:
Since the net force is to the right (in the direction of the applied force), then the applied force must be greater than the friction force. The friction force can be determined using an understanding of net force as the vector sum of all the forces.
Explanation:
Answer:
b) the result we got can be termed approximation because we are neglecting the shear stress acting on the two ends of the cylinder. Here we have considered only the share stress acting on the curved surface area only.
Explanation:
check attachment for solution to A
Answer:
D) not swim in or drink the water from the stream
Explanation:
Low pH means the water is acidic which is harmful to your skin as it can cause burns and irritations. So any means of contacting with water is not healthy. The damage to the skin happens as in acidic water it has more H+ than in the neutral water and the extra H+ ions can ionize the atoms which are combined to form different compounds in the skin when in contact.