Answer:
The answer is A. C and O..
Answer:
A-Caclcuate the potential energy of the ball at that height
Explanation:
(a). Mass of the Body = 10 kg.
Height = 10 m.
Acceleration due to gravity = 9.8 m/s².
Using the Formula,Potential Energy = mgh
= 10 × 9.8 × 10 = 980 J.
(b). Now, By the law of the conservation of the Energy, Total amount of the energy of the system remains constant.
∴ Kinetic Energy before the body reaches the ground is equal to the Potential Energy at the height of 10 m.
∴ Kinetic Energy = 980 J.
(c). Kinetic Energy = 980 J.
Mass of the ball = 10 kg.
∵ K.E. = 1/2 × mv²
∴ 980 = 1/2 × 10 × v²
∴ v² = 980/5
⇒ v² = 196
∴ v = 14 m/s.
An object has undergone acceleration if ...
-- it's moving faster than it was before
or
-- it's moving slower than it was before
or
-- it's moving in a different direction that it was before.
The mathematical and proportional relationship between mL and
said us that
is equivalent to 1mL.
If the density is considered as the amount of mass per unit volume we will have to

here,
m = mass
V = Volume
Replacing we have that


As
we have that the density in g/mL is,

Answer:
a) Em= K +U, b) Em= K
Explanation:
The system in this case is formed by the mobilizes and the hill.
Let's write the expressions correctly and completely.
a) When the car moves in the path, the mechanical energy is the siua of the kinetic energy of the car and the potential energy of the car when going up the hill.
Em = K + U
be) when the car moves in the flat part all the mechanical energy is formed by its kinetic energy that is calculated with the mass and speed of the car
Em = K
c) When the car goes up the hill the energy the mechanical energy is conserved, but part of the kinetic energy is transformed into potential energy.