Answer:
i'm not sure if you are asking as a personal question or a book question so i'm taking it personal.
Explanation:
I was doing a simple task that was handed to me to test my responsibility and I agreed (knowing i am responsible :3). my first thought was "man , this is easy!" but then i started seeing the other kids slaking off and quiting their tasks. I thought that was against the rules, but then i saw my bff doing it too and i thought "this should be ok then!" so i did the same. other kids where still doing it. the teacher came, saw the ones still working and smiled... but when the teacher looked at the ones slaking off omg... his face was like * im gonna kill yall* we took one big gulp and whined. the teacher awarded the ones who completed the task... the others , we had to do our original task but doubled... for 3 weeks!!! it was awful!!!
I WOULD NEVER DO THAT AGAIN!!!
Answer:
Small sports car.
Explanation:
Lets take
mass of the small car = m
mass of the truck = M
As we know that when car collide with the massive truck then due to change in the moment of the car both car as well as truck will feel force.We also know that from Third law of Newton's ,it states that every action have it reaction with same magnitude but in the opposite direction.
Therefore
F = m a
a=Acceleration of the car

F= M a'
a'=Acceleration of the massive truck

Here given that M > m that is why a > a'
Therefore car will experiences more acceleration.
Explanation:
It is a good idea to start with room temperature water in the calorimeter because the room temperature water helps to determine the heating up/cooling down because of the environment as the experiment takes place. Because the calorimeter heat is the same as the heat of the water.
The best answer is A) <span>keep moving at a constant velocity until some forces act on them
As the man you're probably tired of hearing about said:
"Every object persists in its state of rest or in uniform motion in a straight line unless a new force acts upon it"
This is Isaac Newton's 1st law of motion, or the law of inertia.
Put more simply, objects in motion tend to stay in motion, and tend the maintain the same velocity (direction and speed) and objects at rest tend to stay at rest. </span>