PART A)
Electrostatic potential at the position of origin is given by

here we have



now we have


Now work done to move another charge from infinite to origin is given by

here we will have

so there is no work required to move an electron from infinite to origin
PART B)
Initial potential energy of electron




Now we know



now by energy conservation we will have
So here initial total energy is sufficient high to reach the origin
PART C)
It will reach the origin
Answer:
200N
Explanation:
mass(m) = 10 kg
acceleration(a) = 20 m/s^2
Force = mass * acceleration
= 10*20
= 200 N
Force = 200N
During that final period of time,
his acceleration is
(9 m/s - 5 m/s) / (4 sec) = 1 m/s² .
Did you have a question to ask ?
When somebody hands you a Celsius°, it's easy to find the equivalent Fahrenheit°.
Fahrenheit° = (1.8 · Celsius°) + 32° .
So 100°C works out to 212°F.
It's also easy to find the equivalent Kelvin. Just add 273.15 to the Celsius.
So now you can see that 100°C is equal to A and D,
and it's less than B .
The only one it's greater than is C .
A. Coming out near the South Pole and going in near the North Pole