The answer for this problem would be:
Assuming non-relativistic momentum, then you have:
ΔxΔp = mΔxΔv = h / (4)
Δv = h / (4πmΔx)
m ~ 1.67e-27 h ~ 6.62e-34,Δx = 4e-15 -->
Δv ~ 6.62e-34 / (4π * 1.67e-27 * 4e-15) ~ 7,886,270 m/s ~ 7.89e6 m/s
That's about 1% of the speed of light, the assumption that it's non-relativistic.
Venus goes through phases similar to those of earths moon.
Explanation:
The ratio of the areas is the square of the ratio of the radii.
A/A = 3.16² = 9.99
The ratio of the volumes is the cube of the ratio of the radii.
V/V = 3.16³ = 31.6
Incomplete question. Full text is:
"<span>Give an example of a situation in which you would describe an object's position in (a) one-dimension coordinates (b) two-dimension coordinates (c) three-dimension coordinates"
Solution
(a) One dimension example: a man walking along a metal plank. We just need to specify one coordinate, the distance from the beginning of the plank.
(b) Two-dimension example: a ball moving on a circle. In this case, we need two coordinates: (x,y) to specify the position of the ball at every instant, since it is moving on a 2-D plane.
(c) The position of an airplane in the air: in this case we need 3 coordinates, the height, the latitude and the longitude of the airplane.</span>