Answer:
D is the correct answer
Explanation:
A) shows low accuracy and high precision since they missed the bull's-eye but are all grouped together.
B) Shows high accuracy and high precision
C) Shows high precision
D is the only one that shows both low accuracy and low precision
There is a displacement. Just because the ball is thrown up,
and not crossways, doesn't mean its location is not moving. Remember, positive
displacement is together a displacement in the direction east, right, and up.
The velocity is the distance over time. To compute that, you must look how high
the ball moved before falling back down. Acceleration is expected to be
constant at 9.80m/s^2. That is the force of gravity. But remember that you are disregarding
air friction when you are computing the acceleration.
Answer:
C) 50 m/s
Explanation:
With the given information we can calculate the acceleration using the force and mass of the box.
Newton's 2nd Law: F = ma
- 5 N = 1 kg * a
- a = 5 m/s²
List out known variables:
- v₀ = 0 m/s
- a = 5 m/s²
- v = ?
- Δx = 250 m
Looking at the constant acceleration kinematic equations, we see that this one contains all four variables:
Substitute known values into the equation and solve for v.
- v² = (0)² + 2(5)(250)
- v² = 2500
- v = 50 m/s
The final velocity of the box is C) 50 m/s.
The correct answer you should be looking for is complementary. :)