Answer:
The electric field at x = 3L is 166.67 N/C
Solution:
As per the question:
The uniform line charge density on the x-axis for x, 0< x< L is 
Total charge, Q = 7 nC = 
At x = 2L,
Electric field, 
Coulomb constant, K = 
Now, we know that:

Also the line charge density:

Thus
Q = 
Now, for small element:


Integrating both the sides from x = L to x = 2L

![\vec{E_{2L}} = K\lambda[\frac{- 1}{x}]_{L}^{2L}] = K\frac{Q}{L}[frac{1}{2L}]](https://tex.z-dn.net/?f=%5Cvec%7BE_%7B2L%7D%7D%20%3D%20K%5Clambda%5B%5Cfrac%7B-%201%7D%7Bx%7D%5D_%7BL%7D%5E%7B2L%7D%5D%20%3D%20K%5Cfrac%7BQ%7D%7BL%7D%5Bfrac%7B1%7D%7B2L%7D%5D)
![\vec{E_{2L}} = (9\times 10^{9})\frac{7\times 10^{- 9}}{L}[frac{1}{2L}] = \frac{63}{L^{2}}](https://tex.z-dn.net/?f=%5Cvec%7BE_%7B2L%7D%7D%20%3D%20%289%5Ctimes%2010%5E%7B9%7D%29%5Cfrac%7B7%5Ctimes%2010%5E%7B-%209%7D%7D%7BL%7D%5Bfrac%7B1%7D%7B2L%7D%5D%20%3D%20%5Cfrac%7B63%7D%7BL%5E%7B2%7D%7D)
Similarly,
For the field in between the range 2L< x < 3L:

![\vec{E} = K\lambda[\frac{- 1}{x}]_{2L}^{3L}] = K\frac{Q}{L}[frac{1}{6L}]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20K%5Clambda%5B%5Cfrac%7B-%201%7D%7Bx%7D%5D_%7B2L%7D%5E%7B3L%7D%5D%20%3D%20K%5Cfrac%7BQ%7D%7BL%7D%5Bfrac%7B1%7D%7B6L%7D%5D)
![\vec{E} = (9\times 10^{9})\frac{7\times 10^{- 9}}{L}[frac{1}{6L}] = \frac{63}{6L^{2}}](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%289%5Ctimes%2010%5E%7B9%7D%29%5Cfrac%7B7%5Ctimes%2010%5E%7B-%209%7D%7D%7BL%7D%5Bfrac%7B1%7D%7B6L%7D%5D%20%3D%20%5Cfrac%7B63%7D%7B6L%5E%7B2%7D%7D)
Now,
If at x = 2L,

Then at x = 3L:

Answer:
Angle of refraction for red light is
Angle of refraction for blue light is
Explanation:
It is given refractive index for red light is 
Refractive index of blue light 
Angle of incidence 
According to law of refraction 
For red light 



Therefore angle of refraction for red light is 
Similarly for blue light 


r = 
Therefore angle of refraction for blue light is 
No but the sun could be a white dwarf stellar remnant.
The winds normally blow from east to the west rather than blowing from the north to the south in the northern and the southern hemispheres.
<u>Explanation:</u>
The reason for the blowing of the wind from the east to the west rather than from the north to the south in both the hemispheres which are the northern and the southern hemispheres are because it happens in light of the fact that Earth's rotation around it's own axis creates what is known as the Coriolis effect.
The Coriolis impact makes wind frameworks turn counter-clockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere.