1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Damm [24]
3 years ago
7

How many GT2RS cars were made in 2019

Engineering
2 answers:
Effectus [21]3 years ago
7 0

Answer:

one thousand Hope this helps

labwork [276]3 years ago
3 0

Answer:

1000

Explanation:

You might be interested in
How would you describe what would happen to methane if the primary bonds were to break?
erastova [34]

Answer:

All the bonds in methane (CH4CH4) are equivalent, and all have the same dissociation energy.

The product of the dissociation is methyl radical (CH3CH3). All the bonds in methyl radical are equivalent, and all have the same dissociation energy.

The product of that dissociation is methylene (CH2CH2). All the bonds in methylene are equivalent, and all have the same dissociation energy.

The product of that dissociation is methyne (CHCH) .

The C-H bonds in methane do not have the same dissociation energy as C-H bonds in methyl radical, which in turn do not have the same dissociation energy as the C-H bonds in methylene, which are again different from the C-H bond in methyne.

If (by some miracle) you were able to get all four bonds in methane to dissociate absolutely simultaneously, they would all show the same dissociation energy… but that energy, per bond broken, would be different than the energy required to break just one C-H bond in methane, because the products are different.

(In this case, it’s CH4→C+4HCH4→C+4H versus CH4→CH3+HCH4→CH3+H.)

To alter hydrocarbons you add enough energy to break a C-H bond. Why does only one bond break? What concentrates the energy on one C-H bond?

the weakest CH bond is the one that breaks. in plain alkanes it has to do with the molecular orbital interactions between neighboring carbon atoms. look at propane for example. the middle carbon has two C-C bonds, and each of those C-C bonds is strengthened by slight electron delocalization from the C-H bonds overlapping with the antibonding orbitals of the adjacent carbons.

since the C-H bonds on the middle carbon donate electron density to both of its neighbors, those two are weakest.

one of them will break preferentially.

which one actually breaks depends on the reaction conditions (kinetics). frankly it's whichever one ramdomly approaches a nucleophile first. when the nucleophile pulls of one of the H's, the other C-H bonds start to share (delocalize) the negative charge across the whole molecule. so while the middle C feels the majority of the negative charge character, the other two C's take on a fair amount as well...

by the way, alkanes don't really like to break and form anions like that.

a better example would be something like isopropyl iodide, where the C-I bond breaks and the I carries away the electron pair, forming a carbocation (also not particularly stable, but more so than the carbanion).

7 0
3 years ago
In plumbing what is a video snake used for
aleksley [76]

Answer:

How to stop toilets  

Explanation:

I think

Hope this helps

7 0
3 years ago
Read 2 more answers
How are isometric drawings and orthographic drawings similar?
sashaice [31]

Answer:

The horizontal lines of the orthographic drawing

are NOT horizontal in the isometric drawing but are projected at 30-degree and 60. ... degree angles, and the length of the lines remain the same in the isometric as they were in the orthographic.

Hope it's helpful to you

pls mark me as brain list

5 0
4 years ago
Carbon dioxide (CO2) is compressed in a piston-cylinder assembly from p1 = 0.7 bar, T1 = 320 K to p2 = 11 bar. The initial volum
tekilochka [14]

Answer:

W_{12}=-53.9056KJ

Part A:

Q=-7.03734 KJ/Kg (-ve sign shows heat is getting out)

Part B:

Q=1.5265KJ/Kg (Heat getting in)

The value of Q at constant specific heat is approximately 361% in difference with variable specific heat and at constant specific heat Q has opposite direction (going in) than Q which is calculated in Part B from table A-23. So taking constant specific heat is not a good idea and is questionable.

Explanation:

Assumptions:

  1. Gas is ideal
  2. System is closed system.
  3. K.E and P.E is neglected
  4. Process is polytropic

Since Process is polytropic so  W_{12} =\frac{P_{2}V_{2}-P_{1}V_{1}}{1-n}

Where n=1.25

Since Process is polytropic :

\frac{V_{2}}{V_{1}}=(\frac{P_{1}}{P_{2}})^{\frac{1}{1.25}} \\V_{2}= (\frac{P_{1}}{P_{2}})^{\frac{1}{1.25}} *V_{1}

V_{2}= (\frac{0.7}{11})^{\frac{1}{1.25}} *0.262\\V_{2}=0.028924 m^3

Now,W_{12} =\frac{P_{2}V_{2}-P_{1}V_{1}}{1-n}

W_{12} =\frac{11*0.028924-0.7*0.262}{1-1.25}(\frac{10^{5}N/m^2}{1 bar})(\frac{1  KJ}{10^{3}Nm})

W_{12}=-53.9056KJ

We will now calculate mass (m) and Temperature T_2.

m=\frac{P_{1}V_{1}}{RT_{1}}\\ m=\frac{0.7*0.262}{\frac{8.314KJ}{44.01Kg.K}*320}(\frac{10^{5}N/m^2}{1 bar})(\frac{1  KJ}{10^{3}Nm})\\m=0.30338Kg

T_{2} =\frac{P_{2}V_{2}}{Rm}\\ m=\frac{11*0.028924}{\frac{8.314KJ}{44.01Kg.K}*0.30338}(\frac{10^{5}N/m^2}{1 bar})(\frac{1  KJ}{10^{3}Nm})\\T_{2} =555.14K

Part A:

According to energy balance::

Q=mc_{v}(T_{2}-T_{1})+W_{12}

From A-20, C_v for Carbon dioxide at 300 K is 0.657 KJ/Kg.k

Q=0.30338*0.657(555.14-320)+(-53.9056)

Q=-7.03734 KJ/Kg (-ve sign shows heat is getting out)

Part B:

From Table A-23:

u_{1} at 320K = 7526 KJ/Kg

u_{2} at 555.14K = 15567.292 (By interpolation)

Q=m(\frac{u(T_{2})-u(T_{1})}{M} )+W_{12}

Q=0.30338(\frac{15567.292-7526}{44.01} )+(-53.9056)

Q=1.5265KJ/Kg (Heat getting in)

The value of Q at constant specific heat is approximately 361% in difference with variable specific heat and at constant specific heat Q has opposite direction (going in) than Q which is calculated in Part B from table A-23. So taking constant specific heat is not a good idea and is questionable.

7 0
4 years ago
Answer true or false 3.Individual people decide what will be produced in a command<br> oconomy
Pie

Answer:

False

Explanation:

The government decides the productions.

7 0
4 years ago
Read 2 more answers
Other questions:
  • The displacement volume of an internal combustion engine is 2.2 liters. The processes within each cylinder of the engine are mod
    13·1 answer
  • 3
    13·1 answer
  • Refrigerant 22 undergoes a constant-pressure process within a piston–cylinder assembly from saturated vapor at 3.5 bar to a fina
    8·1 answer
  • A banked highway is designed for traffic moving at v = 88 km/h. The radius of the curve r = 314 m. show answer No Attempt 50% Pa
    5·2 answers
  • Whats the best used for Arch bridge
    11·1 answer
  • A heavy-duty electrical resistor is 2cm in diameter by 16cm long. 5 amps of current through it heats the resistor to 100°C, and
    11·1 answer
  • What is the Thermodynamic (Absolute) temperature scale?
    13·1 answer
  • Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.
    11·1 answer
  • Use the graph to determine which statement is true about the end behavior of f(x).
    12·2 answers
  • Es un principio de la distribución en plantas.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!