Answer:
A) If you want to achieve the SMALLEST possible resistance, you should attach the leads to the opposite faces that measure b) 5 cm by 8 cm.
B) If you want to achieve the LARGEST possible resistance, you should attach the leads to the opposite faces that measure a) 3 cm × 5 cm
Explanation:
Resistivity is directly proportional to lenght and inversely properly to cross sectional area.
For the first case, 5 cm by 8 cm gives the largest area and leave 3 cm as the lenght. The resistivity of the metal will be smallest in these dimensions.
For the second case, 3 cm by 5 cm gives the smallest area, leaving 8 cm as the lenght. This is the maximum arrangement that can give the largest resistance possible.
Answer:
45.6m
Explanation:
The equation for the position y of an object in free fall is:

With the given values in the question the equation has one unknown v₀:

Solving for t=1:
1) 
To find the hight of the tower you can use the concept of energy conservation:
The energy of the body 1 sec before it hits the ground:
2) 
If h is the height of the tower, the energy on top of the tower:
3) 
Combining equation 2 and 3 and solving for h:
4) 
Combining equation 1 and 4:

Speed v = distance travelled / time taken
v = d / t
v = 540 / 60h
v = 9 km /h
Yes potential increases while kinetic decreases