Answer:
The pressure inside the container would increase with each additional pump.
Explanation:
- From the general gas law of ideal gases:
<em>PV = nRT,</em>
where, P is the pressure of the gas.
V is the volume of the gas.
n is the no. of moles of the gas.
R is the general gas constant.
T is the temperature of the gas.
- As clear from the gas law; the pressure of the gas is directly proportional to the no. of moles of the gas.
<em>P α n.</em>
- As gas particles are pumped into a rigid steel container, the no. of moles of the gas will increase.
So, the pressure of the gas will increase.
<em>Thus, the right choice is: The pressure inside the container would increase with each additional pump.</em>
Answer:
caused by the ability of electrons to flow from one half cell too the other
Explanation:
How is the potential voltage of a redox reaction?
The potential difference is caused by the ability of electrons to flow from one half cell to the other. Electrons are able to move between electrodes because the chemical reaction is a redox reaction. A redox reaction occurs when a certain substance is oxidized, while another is reduced.
Answer:
0.7g of HCl
Explanation:
First, let us write a balanced equation for the reaction between HCl and Al(OH)3.
This is illustrated below:
Al(OH)3 + 3HCl —> AlCl3 + 3H2O
Next, let us obtain the masses of Al(OH)3 and HCl that reacted together according to the equation. This can be achieved as shown below:
Molar Mass of Al(OH)3 = 27 + 3(16+1)
= 27 + 3(17) = 27 + 51 = 78g/mol.
Molar Mass of HCl = 1 + 35.5 = 36.5g/mol
Mass of HCl from the balanced equation = 3 x 36.5 = 109.5g
Now we can obtain the mass of HCl that would react with 0.5g of Al(OH)3. This can be achieved as follow:
Al(OH)3 + 3HCl —> AlCl3 + 3H2O
From the equation above,
78g of Al(OH)3 reacted with 109.5g of HCl.
Therefore, 0.5g of Al(OH)3 will react with = (0.5 x 109.5)/78 = 0.7g of HCl
<u>Answer:</u> The average atomic mass of X is 28.09 amu
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
Mass of isotope 1 = 27.979 amu
Percentage abundance of isotope 1 = 92.21 %
Fractional abundance of isotope 1 = 0.9212
Mass of isotope 2 = 28.976 amu
Percentage abundance of isotope 2 = 4.70 %
Fractional abundance of isotope 2 = 0.0470
Mass of isotope 3 = 29.974 amu
Percentage abundance of isotope 3 = 3.09 %
Fractional abundance of isotope 3 = 0.0309
Putting values in equation 1, we get:
![\text{Average atomic mass of X}=[(27.979\times 0.9212)+(28.976\times 0.0470)+(29.974\times 0.0309)]](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20atomic%20mass%20of%20X%7D%3D%5B%2827.979%5Ctimes%200.9212%29%2B%2828.976%5Ctimes%200.0470%29%2B%2829.974%5Ctimes%200.0309%29%5D)

Hence, the average atomic mass of X is 28.09 amu