1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liraira [26]
4 years ago
10

A rigid tank with a total volume of 0.05 m3 initially contains a two-phase liquid-vapor mixture of water at a pressure of 15 bar

and a quality of 0.2. The tank is heated at a constant rate while a pressure-regulating valve is used to maintain a constant tank pressure by allowing saturated vapor to escape. Kinetic and potential energy effects can be neglected. If the tank is heated until the quality reaches 0.5, determine the final mass (kg) within the tank and the total amount of heat transfer required (kJ).
Engineering
1 answer:
Westkost [7]4 years ago
5 0

Answer:

a) m_{2} = 0.753\,kg, b) Q_{in} = 2122.963\,kJ

Explanation:

A rigid tank means a storage whose volume is constant. Process is entirely isobaric. Initial and final properties of water are included below:

State 1 - Gas-Vapor Mixture

P = 1500\,kPa

T = 198.29^{\textdegree}C

\nu = 0.02726\,\frac{m^{3}}{kg}

u = 1192.94\,\frac{kJ}{kg}

h_{g} = 2791.0\,\frac{kJ}{kg}

x = 0.2

State 2 - Gas-Vapor Mixture

P = 1500\,kPa

T = 198.29^{\textdegree}C

\nu = 0.06643\,\frac{m^{3}}{kg}

u = 1718.12\,\frac{kJ}{kg}

h_{g} = 2791.0\,\frac{kJ}{kg}

x = 0.5

The model for the rigid tank is created by using the First Law of Thermodynamics:

Q_{in} - (m_{1}-m_{2})\cdot h_{g} = m_{2}\cdot u_{2}-m_{1}\cdot u_{1}

Initial and final masses are:

m_{1} = \frac{V_{1}}{\nu_{1}}

m_{1} = \frac{0.05\,m^{3}}{0.02726\,\frac{m^{3}}{kg} }

m_{1} = 1.834\,kg

m_{2} = \frac{V_{2}}{\nu_{2}}

m_{2} = \frac{0.05\,m^{3}}{0.06643\,\frac{m^{3}}{kg} }

m_{2} = 0.753\,kg

a) The final mass within the tank is:

m_{2} = 0.753\,kg

b) The total amount of heat transfer is:

Q_{in} = m_{2}\cdot u_{2}-m_{1}\cdot u_{1}+ (m_{1}-m_{2})\cdot h_{g}

Q_{in} = (0.753\,kg)\cdot (1718.12\,\frac{kJ}{kg} )- (1.834\,kg)\cdot (1192.94\,\frac{kJ}{kg} ) + (1.081\,kg)\cdot (2791.0\,\frac{kJ}{kg} )

Q_{in} = 2122.963\,kJ

You might be interested in
Water is the working fluid in an ideal Rankine cycle. The condenser pressure is 8 kPa, and saturated vapor enters the turbine at
sergeinik [125]

Explanation:

The obtained data from water properties tables are:

Point 1 (condenser exit) @ 8 KPa, saturated fluid

h_{f} = 173.358 \\h_{fg} = 2402.522

Point 2 (Pump exit) @ 18 MPa, saturated fluid & @ 4 MPa, saturated fluid

h_{2a} =  489.752\\h_{2b} =  313.2

Point 3 (Boiler exit) @ 18 MPa, saturated steam & @ 4 MPa, saturated steam

h_{3a} = 2701.26 \\s_{3a} = 7.1656\\h_{3b} = 2634.14\\s_{3b} = 7.6876

Point 4 (Turbine exit) @ 8 KPa, mixed fluid

x_{a} = 0.8608\\h_{4a} = 2241.448938\\x_{b} = 0.9291\\h_{4b} = 2405.54119

Calculate mass flow rates

Part a) @ 18 MPa

mass flow

\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3a}  - h_{4a}) - (h_{2a}  - h_{f})}\\\\= \frac{100*10^ 3}{(2701.26  - 2241.448938 ) - (489.752  - 173.358)}\\\\= 697.2671076 \frac{kg}{s} = 2510161.587 \frac{kg}{hr}

Heat transfer rate through boiler

Q_{in}  = mass flow * (h_{3a} -  h_{2a})\\Q_{in} = (697.2671076)*(2701.26-489.752)\\\\Q_{in} = 1542011.787 W

Heat transfer rate through condenser

Q_{out}  = mass flow * (h_{4a} -  h_{f})\\Q_{out} = (697.2671076)*(2241.448938-173.358)\\\\Q_{out} = 1442011.787 W

Thermal Efficiency

n = \frac{W_{net}  }{Q_{in} } = \frac{100*10^3}{1542011.787}  \\\\n = 0.06485

Part b) @ 4 MPa

mass flow

\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3b}  - h_{4b}) - (h_{2b}  - h_{f})}\\\\= \frac{100*10^ 3}{(2634.14  - 2405.54119 ) - (313.12  - 173.358)}\\\\= 1125 \frac{kg}{s} = 4052374.235 \frac{kg}{hr}

Heat transfer rate through boiler

Q_{in}  = mass flow * (h_{3b} -  h_{2b})\\Q_{in} = (1125.65951)*(2634.14-313.12)\\\\Q_{in} = 2612678.236 W

Heat transfer rate through condenser

Q_{out}  = mass flow * (h_{4b} -  h_{f})\\Q_{out} = (1125)*(2405.54119-173.358)\\\\Q_{out} = 2511206.089 W

Thermal Efficiency

n = \frac{W_{net}  }{Q_{in} } = \frac{100*10^3}{1542011.787}  \\\\n = 0.038275

6 0
3 years ago
List the steps involved in project development.
trasher [3.6K]

Answer:

Developed by the project management institute (PMI) ,the five phases of project management include conception and imitation ,planning ,execuation, performance ,monitoring, and project close .

6 0
4 years ago
A 3 m aluminum pole is kept at a residential site for construction
Aliun [14]

Answer:

I don't know sorry

Explanation:

5 0
3 years ago
Cual es el impacto medioambiental del mortero?
ddd [48]

Explanation:

La industria del acero desecha gran cantidad de polvos, los que acopiados al aire libre, sobre el suelo y sometidos a ¡a acción de los agentes climáticos, contaminan el medio ambiente. El propósito del presente trabajo es evaluar el impacto ambiental que produce la incorporación de polvos de acería a matrices de cemento portland, sometidas a condiciones de humedad, presión y temperatura. Se caracterizó químicamente el material de desecho de una acería de Argentina, para identificar los elementos presentes. Por difractometría de rayos X (XRD) se determinaron las estructuras de las sustancias y su grado de oxidación. Se utilizó SEM-EDAX con el propósito de observar forma, tamaño y composición química de las partículas. Se elaboraron diferentes morteros de cemento Portland y se incorporó este material en diferentes porcentajes. Se moldearon probetas normalizadas para realizar ensayos mecánicos, de lixiviación y estudios petrográficos. Se analizó la composición química del agua de curado de las probetas y del líquido obtenido en ensayos de lixiviación. Los resultados permitieron identificar y cuantificar los elementos peligrosos que pueden se incorporados al ambiente y sugerir medidas de prevención.

3 0
3 years ago
Consider a Pitot static tube mounted on the nose of an experimental airplane. A Pitot tube measures the total pressure at the ti
kotykmax [81]

Answer:

M∞ = 0.53

M∞ = 1.5

M∞ = 3.1

Explanation:

Find: For each case the free stream Mach number.

-Pitot pressure=1.22×10^5N/m2 , static pressure=1.01 × 10^5N/m2 .

Solution:

- The free stream Mach number is a function of static to hydrodynamic pressures. So for this case we have:

            P = 1.01 × 10^5 .. static pressure

            Po = 1.22×10^5   ... pitot pressure ( hydrodynamic )

- Take the ratio:

            P / Po = (1.01 × 10^5) / (1.22×10^5) = 0.8264.

- Use Table A.13 and look up the ratio P/Po = 0.8264 for Mach number M∞.

            M∞ = 0.53

Find:

-Pitot pressure=7222 lb/ft^2 , static pressure=2116 lb/ft^2

Solution:

- The free stream Mach number is a function of static to hydrodynamic pressures. So for this case we have:

            P = 2116 .. static pressure

            Po = 7222   ... pitot pressure ( hydrodynamic )

- Take the ratio:

            P / Po = (2116) / (7222) = 0.2930.

- However, since this is supersonic, a normal shock sits in front of the Pitot tube.  Hence, Po is now the total pressure behind a normal shock wave. Thus, we have  to use Table A.14.

            P1 = 2116 .. static pressure

            Po2 = 7222   ... pitot pressure ( hydrodynamic )

- Take the ratio:

            Po2 / P1 = (7222) / (2116) = 3.412.

- Use Table A.14 and look up the ratio Po2/P1 = 3.412 for Mach number M∞.

            M∞ = 1.5

Find:

-Pitot pressure=13197 lb/f^t2 , static pressure=1020 lb/ft^2

Solution:

- The free stream Mach number is a function of static to hydrodynamic pressures. So for this case we have:

            P = 1020 .. static pressure

            Po = 13197   ... pitot pressure ( hydrodynamic )

- Take the ratio:

            P / Po = (1020) / (13197) = 0.0772.

- Again, since this is supersonic, a normal shock sits in front of the Pitot tube.  Hence, Po is now the total pressure behind a normal shock wave. Thus, we have  to use Table A.14.

            P1 = 1020 .. static pressure

            Po2 = 13197   ... pitot pressure ( hydrodynamic )

- Take the ratio:

            Po2 / P1 = (13197) / (1020) = 12.85.

- Use Table A.14 and look up the ratio Po2/P1 = 12.85 for Mach number M∞.

            M∞ = 3.1

3 0
3 years ago
Other questions:
  • I want to cancel my subscription
    5·2 answers
  • Propane burns at an equivalence ratio (ER) of 0.6, determine actual air-fuel ratio. If excess air is 5%, what will be the actual
    8·1 answer
  • 100 points Im so bored lol
    11·2 answers
  • A liquid phase reaction, A → B, is to be carried out in an isothermal, well mixed batch reactor with a volume of 1L. Initially t
    14·1 answer
  • The cylindrical aluminum air tank below is to be rated for 300 psi and it must comply with the ASME Boiler Code which requires a
    5·2 answers
  • In a reversible process both the system and surrondings can be returned to their initial states. a)-True b)-False
    14·1 answer
  • Oxygen combines with nitrogen in the air to form NOx at about
    6·2 answers
  • Brainly and points if you want
    13·2 answers
  • Hi shawty have a good day/night <33 (heres a picture of freddie benson)
    11·2 answers
  • What would be the structure for the body points for a persuasive presentation?.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!