More force to accelerate. If you push a car compared to a beach ball, which will you have to push harder for it to move? That's pretty much what the question is asking, if that helps any:)
In order to calculate the time taken by the snowball to reach the highest point in its journey, we need to consider the variables along the y-direction.
Let us list out what we know from the question so that we can decide on the equation to be used.
We know that Initial Y Velocity
= 8.4 m/s
Acceleration in the Y direction
= -9.8 m/
, since the acceleration due to gravity points in the downward direction.
Final Y Velocity
= 0 because at the highest point in its path, an object comes to rest momentarily before falling down.
Time taken t = ?
From the list above, it is easy to see that the equation that best suits our purpose here is 
Plugging in the numbers, we get 0 = 8.4 - (9.8)t
Solving for t, we get t = 0.857 s
Therefore, the snowball takes 0.86 seconds to reach its highest point.
Answer:
wave length is 1.2m
Explanation:
since formula of wave length is v/f
v(speed of sound in air at stp is 300ms^-1)
f(frequency 250hertz)
then wave length is 300÷250 which give 1.2m
Answer:
red I think
Explanation:
it's on red so I googled some of it and the closest was red