1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulsSmile [24]
3 years ago
13

A brick is lying on a table in a state of static equilibrium. If the mass of the brick is 7.52 kilograms, what is the normal for

ce exerted by the table on the brick?
A. −73.7 newtons
B. 73.7 newtons
C. 80.7 newtons
D. 7.52 newtons
E. 8.07 newtons

I believe the answer is either A. or B.—I'm just not sure if it should be expressed as a negative or not because the force is acting in the opposite direction. 
Physics
1 answer:
frez [133]3 years ago
5 0
In mechanics, the normal force<span> is the component, perpendicular to the surface (surface being a plane) of contact, of the contact </span>force<span> exerted on an object . We calculate as follows:

</span>∑F along x = 0 = F - Fn
<span>
Fn = F = mg = 7.52(9.81) = 73.77 N <------OPTION B</span>
You might be interested in
You are an engineer helping to design a roller coaster that carries passengers down a steep track and around a vertical loop. Th
vova2212 [387]

Answer:

h >5/2r

Explanation:

This problem involves the application of the concepts of force and the work-energy theorem.

The roller coaster undergoes circular motion when going round the loop. For the rider to stay in contact with the cart at all times, the roller coaster must be moving with a minimum velocity v such that at the top the rider is in a uniform circular motion and does not fall out of the cart. The rider moves around the circle with an acceleration a = v²/r. Where r = radius of the circle.

Vertically two forces are acting on the rider, the weight and normal force of the cart on the rider. The normal force and weight are acting downwards at the top. For the rider not to fall out of the cart at the top, the normal force on the rider must be zero. This brings in a design requirement for the roller coaster to move at a minimum speed such that the cart exerts no force on the rider. This speed occurs when the normal force acting on the rider is zero (only the weight of the rider is acting on the rider)

So from newton's second law of motion,

W – N = mv²/r

N = normal force = 0

W = mg

mg = ma = mv²/r

mg = mv²/r

v²= rg

v = √(rg)

The roller coaster starts from height h. Its potential energy changes as it travels on its course. The potential energy decreases from a value mgh at the height h to mg×2r at the top of the loop. No other force is acting on the roller coaster except the force of gravity which is a conservative force so, energy is conserved. Because energy is conserved the total change in the potential energy of the rider must be at least equal to or greater than the kinetic energy of the rider at the top of the loop

So

ΔPE = ΔKE = 1/2mv²

The height at the roller coaster starts is usually higher than the top of the loop by design. So

ΔPE =mgh - mg×2r = mg(h – 2r)

2r is the vertical distance from the base of the loop to the top of the loop, basically the diameter of the loop.

In order for the roller coaster to move smoothly and not come to a halt at the top of the loop, the ΔPE must be greater than the ΔKE at the top.

So ΔPE > ΔKE at the top. The extra energy moves the rider the loop from the top.

ΔPE > ΔKE

mg(h–2r) > 1/2mv²

g(h–2r) > 1/2(√(rg))²

g(h–2r) > 1/2×rg

h–2r > 1/2×r

h > 2r + 1/2r

h > 5/2r

5 0
3 years ago
Read 2 more answers
2. An electron and a proton are separated by 5 cm:
Diano4ka-milaya [45]

Answer:

a) the charge of an electron is equivalent to the magnitude of the elementary charge but barring a negative sign since the side of the elementary charge is roughly 1.602 * 10 - 19 Columbus then the charge of the electronic is-1.602 * 10 - 19

b) b=2T on the electron moving in the magnetic field

7 0
3 years ago
With a bit of algebraic reasoning find your gravitational acceleration toward any planet of mass M a distance d from its center.
grandymaker [24]

The acceleration due to gravity is given as:

                             g = GM/r²

<h3>Derivation of gravitational acceleration:</h3>

According to Newton's second law of motion,

F = ma

where,

F = force

m = mass

a = acceleration

According to Newton's law of gravity,

F<em>g </em>= GMm/(r + h)²

F<em>g = </em>gravitational force

From Newton's second law of motion,

F<em>g </em>= ma

a = F<em>g</em>/m

We can refer to "a" as "g"

a = g = GMm/(m)(r + h)²

g = GM/(r + h)²

When the object is on or close to the surface, the value of g is constant and height has no considerable impact. Hence, it can be written as,

g = GM/r²

Learn more about gravitational acceleration here:

brainly.com/question/2142879

#SPJ4

5 0
2 years ago
A(n) ___ keeps a reaction from occurring by increasing the activation energy required for a reaction to occur. A. inhibitor B. c
skelet666 [1.2K]
Due to requirements i am typing this but the ans is a
8 0
3 years ago
Read 2 more answers
A car is traveling at 15 m/sm/s . Part A How fast would the car need to go to double its kinetic energy
GREYUIT [131]

Answer:

21.21 m/s

Explanation:

Let KE₁ represent the initial kinetic energy.

Let v₁ represent the initial velocity.

Let KE₂ represent the final kinetic energy.

Let v₂ represent the final velocity.

Next, the data obtained from the question:

Initial velocity (v₁) = 15 m/s

Initial kinetic Energy (KE₁) = E

Final final energy (KE₂) = double the initial kinetic energy = 2E

Final velocity (v₂) =?

Thus, the velocity (v₂) with which the car we travel in order to double it's kinetic energy can be obtained as follow:

KE = ½mv²

NOTE: Mass (m) = constant (since we are considering the same car)

KE₁/v₁² = KE₂/v₂²

E /15² = 2E/v₂²

E/225 = 2E/v₂²

Cross multiply

E × v₂² = 225 × 2E

E × v₂² = 450E

Divide both side by E

v₂² = 450E /E

v₂² = 450

Take the square root of both side.

v₂ = √450

v₂ = 21.21 m/s

Therefore, the car will travel at 21.21 m/s in order to double it's kinetic energy.

8 0
3 years ago
Other questions:
  • (a) Determine the required delta-v, Ave, to the nearest m/s, to reach a circular 500 km altitude equatorial prograde (eastward)
    5·1 answer
  • A ball with a weight of 0.5 N is submerged under water and then released. There is a net force of 5 N upwards. what is the buoya
    11·1 answer
  • In which region of the electromagnetic spectrum is this radiation found?
    9·1 answer
  • How is high speed internet transmitted around the world?
    15·1 answer
  • Un corredor hace los 400 metros lisos en 50 seg. Calcula la velocidad en la carrera.
    5·1 answer
  • If you were to throw one show with a force of 20 Newtons and the other with a force of 10 Newtons, which would accelerate more?
    12·1 answer
  • WHAT ARE THREE TECHNICAL ADVANCEMENTS
    14·1 answer
  • Please guys I want your help, there is 20p point
    10·1 answer
  • A racquetball with a mass of 42 g is moving with a horizontal speed of 7 m/s to the right (+x direction). It hits the wall of th
    10·1 answer
  • An object with a mass of m = 122 kg is suspended by a rope from the end of a uniform boom with a mass of M = 74.9 kg and a lengt
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!