ANSWER
Velocity of the mass reaches zero
EXPLANATION
We want to identify what hapens to a mass attached toa a spring at maximum displacement.
When a mass attached to a spring is at its maximum position of displacement, the direction of the mass begins to change. This implies that the velocity of the mass will reach zero.
Hence, at maximum displacement, the velocity of the mass reaches zero.
Answer:
possibly because the car is running out of gas
Explanation:
Answer: the horizontal component of total momentum
Explanation:
Since the open cart is rolling to the left on the horizontal surface, the quantity that has the same value just before and just after the package lands in the cart is the horizontal component of total momentum.
Momentum, is the product of the mass of a particle and the velocity of the particle. The change of momentum depends on the force which acts on it. The addition of the the individual momenta is the total momentum.
Answer:
Both objects will undergo the same change in velocity
Explanation:
m = Mass of the Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Earth = 6371000 m
m = Mass of object
Any object which is falling has only the acceleration due to gravity.

The acceleration due to gravity on Earth is 9.81364 m/s²
So, the speeds of the objects will change at an equal rate of 9.81364 m/s² but the change will be negative when an object is thrown up.
Hence, both objects will undergo the same change in velocity.
Answer:
nodding of head ,yes- static equilibrium
nodding of head, no- dynamic equilibrium.
Explanation:
static equilibrium monitors head position when body is not moving .
dynamic equilibrium monitors the angular or rotational movements of the head when body moves.