Answer:
The bowling ball has more kinetic energy than the tennis ball
Explanation:
Using the formula 1/2 mass × acceleration we found that the tennis ball had a kinetic energy of 0.75 while the bowling ball had a kinetic energy of 10.5 hence the bowling ball has the ability to do more work
<u>We are given:</u>
Mass of Na added = 4.35 grams
Mass of water = 105 grams
<u>Mass Percent of Na:</u>
Total mass of the solution = mass of solute + mass of solvent
Total mass of the solution = 4.35 + 105 = 109.35 grams
Mass percent of solute = (mass of solute / mass of solution) * 100
Mass percent of Solute = (4.35 / 109.35) * 100
Mass percent = 3.978 %
In chemical reactions, the actual yield is not the same as the expected yield . Actual yield is lower than the theoretical yield . Then we have to find the yield percentage. To see what percentage of the theoretical yield is the actual yield.
Percent yield = actual yield / theoretical yield x 100%
Percent yield = 24.6/55.9 x100%
Percent yield = 44%
Answer:
They give off their own light energy
Explanation:
I'm taking astronomy and I answered this questions not too long ago
Answer:
pH = 12.15
Explanation:
To determine the pH of the HCl and KOH mixture, we need to know that the reaction is a neutralization type.
HCl + KOH → H₂O + KCl
We need to determine the moles of each compound
M = mmol / V (mL) → 30 mL . 0.10 M = 3 mmoles of HCl
M = mmol / V (mL) → 40 mL . 0.10 M = 4 mmoles of KOH
The base is in excess, so the HCl will completely react and we would produce the same mmoles of KCl
HCl + KOH → H₂O + KCl
3 m 4 m -
1 m 3 m
As the KCl is a neutral salt, it does not have any effect on the pH, so the pH will be affected, by the strong base.
1 mmol of KOH has 1 mmol of OH⁻, so the [OH⁻] will be 1 mmol / Tot volume
[OH⁻] 1 mmol / 70 mL = 0.014285 M
- log [OH⁻] = 1.85 → pH = 14 - pOH → 14 - 1.85 = 12.15