Answer:
The ball experiences the greater momentum change
Explanation:
The momentum change of each object is given by:

where
m is the mass of the object
v is the final velocity
u is the initial velocity
Both objects have same mass m and same initial velocity u. So we have:
- For the ball, the final velocity is

Since it bounces back (so, opposite direction --> negative sign) with same speed (so, the magnitude of the final velocity is still u). So the change in momentum is

- For the clay, the final velocity is

since it sticks to the wall. So, the change in momentum is

So we see that the greater momentum change (in magnitude) is experienced by the ball.
Answer:
hi
Explanation:
The answer is Responding Variables Hope this helps :D
Elliptical, as shown by most projections
Answer
The type of boundary formed when lithospheric plates collide is called Convergent boundary
Explanation
When plates of the lithosphere collide, they form a sub-duction zone where the denser plate will be subdued underneath the less dense one. The one subdued later melts and get destroyed. This boundary occurs when; ocean crust meets ocean crust, when oceanic and continental crust meet and where continental crust meets continental crust.
Answer:
B. Two waves have displaced in opposite directions
Explanation:
Interference occurs when two waves meet at a point in space. When this occurs, two extreme conditions can occur:
- if the two waves are in phase (=displacement in the same direction), the amplitude of the resultant wave is equal to the sum of the amplitudes of the two waves:
A = A1 + A2
and this condition is called constructive interference
- if the two waves are in anti-phase (=displacement in opposite directions), the amplitude of the resultant wave is equal to the difference of the amplitudes of the two waves:
A = |A1 - A2|
and this condition is called destructive interference. Note that if A1=A2, the amplitude of the resultant wave is zero.