<u>Answer:</u> The correct statement is low temperature only, because entropy decreases during freezing.
<u>Explanation:</u>
The relationship between Gibb's free energy, enthalpy, entropy and temperature is given by the equation:

Where,
= change in Gibb's free energy
= change in enthalpy
T = temperature
= change in entropy
It is given that freezing of methane is taking place, which means that entropy is decreasing and
is becoming negative. It is also given that the reaction is an exothermic reaction, this means that the
is also negative.
For a reaction to be spontaneous,
must be negative.
![-ve=-ve-[T(-ve)]\\\\-ve=-ve+T](https://tex.z-dn.net/?f=-ve%3D-ve-%5BT%28-ve%29%5D%5C%5C%5C%5C-ve%3D-ve%2BT)
From above equations, it is visible that
will be negative only when the temperature will be low.
Hence, the correct statement is low temperature only, because entropy decreases during freezing.
Ba! It is a metal and wants to lose 2 electrons ASAP
Answer:
1.25 Moles
Explanation:
1.25 moles of solute
Explanation:
Molarity is defined as the number of moles of solute per liter of solution.
Molarity = moles of solute / liter of solution
We are given the molarity and volume, both of which have the correct units. All we have to do is rearrange the equation to find the number of moles. You can do this by multiplying both sides of the equation by the volume to cancel it out on the right hand side. Afterwards, you should end up having the volume multiplied by the molarity equaling the number of moles of solute like so:
Moles of solute = Molarity * Volume
2.5M HCl * 0.5 L = 1.25 moles of HCl
I hope this made sense.
Answer:
catalysts help speed up reactions which implies that they provide a alternative pathway and when there is less activation energy more particles have more energy to react
It’s C because the oak trees create a population