1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
statuscvo [17]
3 years ago
14

One of my tools stopped working, and I found that in order to fix it, I need to replace a broken wire. The broken wire has a dia

meter of 5mm and a length of 15 cm. When it was connected to the battery, a current of 12.5mA flowed through the wire. The only wire that I have at home is the same material, but has a diameter of 2mm.
a) If I replace the broken piece of wire with a 15cm length of my 2mm diameter wire, what will happen to the current (increase or decrease)?
What is the value of the current through the new wire (assume that it’s connected to the same battery as the original wire)? Hint: Think about the resistances of the old and new wires.
b) How long should the new wire (2mm diameter) be if I want to ensure that the current passing through it is the same as the original wire (12.5mA)?
Engineering
1 answer:
professor190 [17]3 years ago
6 0

Answer:

a) I₂ = 2 mA   (The current has decreased)

b) L₂ = 2.4 cm

Explanation:

Consider the old wire as wire 1 and the new wire as wire 2. The data that we have from the question is:

Current through wire 1 = I₁ = 12.5 mA

Diameter of wire 1 = d₁ = 5 mm

Length of wire 1 = L₁ = 15 cm

Cross-Sectional Area of wire 1 = A₁ = πd₁²/4 = π(5 mm)²/4 = 19.63 mm²

Diameter of wire 2 = d₂ = 2 mm

Cross-Sectional Area of wire 2 = A₂ = πd₂²/4 = π(2 mm)²/4 = 3.14 mm²

a)

Length of wire 2 = L₂ = 15 cm

Since, the battery is same. Therefore, the voltage will be same for both wires.

V₁ = V₂

using Ohm's Law (V = IR)

I₁R₁ = I₂R₂

Since resistance of wire is given by formula:  R = ρL/A

Therefore,

I₁ρ₁L₁/A₁ = I₂ρ₂L₂/A₂

where,

ρ = resistivity, and it depends upon material of wire and the material of both wires is same and the length of wires is also same.

Hence,    ρ₁ = ρ₂

and      L₁ = L₂

and the equation becomes:

I₁/A₁ = I₂/A₂

I₂ = I₁A₂/A₁

I₂ = (12.5 mA)(3.14 mm²)/(19.63 mm²)

<u>I₂ = 2 mA</u>

<u>Thus, the current has decreased.</u>

<u></u>

b)

In order to have same current the resistance of both wires must be same:

R₁ = R₂

ρ₁L₁/A₁ = ρ₂L₂/A₂

Since,   ρ₁ = ρ₂

Therefore,

L₁/A₁ = L₂/A₂

L₂ = L₁A₂/A₁

L₂ = (15 cm)(3.14 mm²)/(19.63 mm²)

<u>L₂ = 2.4 cm</u>

You might be interested in
Against which type of economic structure does conflict theory argue?
alisha [4.7K]

Answer:

b) socialism

Explanation:

Conflict theory focuses on the competition between groups within society over limited resources. Conflict theory views social and economic institutions as tools of the struggle between groups or classes, used to maintain inequality and the dominance of the ruling class.

HOPE IT HELPS!!!!!!!!!

4 0
3 years ago
Poles are values of Laplace transform variable, s, that make denominator of transfer function zero. Zeros are values of Laplace
Ostrovityanka [42]

Answer:

Zero 1 = -1

Zero 2 = -3

Pole 1 = 0

Pole 2 = -2

Pole 3 = -4

Pole 4 = -6

Gain = 4

Explanation:

For any given transfer function, the general form is given as

T.F = k [N(s)] ÷ [D(s)]

where k = gain of the transfer function

N(s) is the numerator polynomial of the transfer function whose roots are the zeros of the transfer function.

D(s) is the denominator polynomial of the transfer function whose roots are the poles of the transfer function.

k [N(s)] = 4s² + 16s + 12 = 4[s² + 4s + 3]

it is evident that

Gain = k = 4

N(s) = (s² + 4s + 3) = (s² + s + 3s + 3)

= s(s + 1) + 3 (s + 1) = (s + 1)(s + 3)

The zeros are -1 and -3

D(s) = s⁴ + 12s³ + 44s² + 48s

= s(s³ + 12s² + 44s + 48)

= s(s + 2)(s + 4)(s + 6)

The roots are then, 0, -2, -4 and -6.

Hope this Helps!!!

3 0
3 years ago
Convection ovens operate on the principle of inducing forced convection inside the oven chamber with a fan. A small cake is to b
coldgirl [10]

Answer:

A) q'_free = 3146.41 W/m²

B) q'_forced = 7521.41 W/m²

Explanation:

We are given;

Free convection coefficient; h_fr = 5 W/m²K

Force convection coefficient; h_forced = 30 W/m²K

Emissivity; ε = 0.95

Temperature of surrounding which is equal to temperature of air; T_s = T_air = 200°C = 473K

Initial temperature; T_i = 25°C = 298K

A) Now, since the convection feature is disabled, the mode of heat transfer associated with this condition is through free convection and radiation.

Thus, the formula for the heat flux under this condition is given as;

q'_free = q'_free convection + q'_radiation

q'_free convection = h_free(T_∞ - T_i) where T_∞ is equivalent to the value of T_air

Also, q'_radiation = ε•σ((T_air)⁴ - (T_i)⁴)

Where, σ is stephan boltzmann constant and has a constant value of 5.67 × 10^(−8) W/m²K⁴

Thus, rewriting;

q'_free = q'_free convection + q'_radiation

We have;

q'_free = [h_free(T_∞ - T_i)] + [ε•σ((T_air)⁴ - (T_i)⁴)]

Plugging in the relevant values to obtain;

q'_free = [5(473 - 298)] + [0.95•5.67 × 10^(−8)((473)⁴ - (298)⁴)]

q'_free = 875 + 2271.41

q'_free = 3146.41 W/m²

B) Now, in this case, since the convection feature is disabled, the mode of heat transfer associated with this condition is through forced convection and radiation.

Thus, the formula for the heat flux under this condition is given as;

q'_forced = q'_forced convection + q'_radiation

Where;

q'_forced convection = h_forced(T_∞ - T_i) where T_∞ is equivalent to the value of T_air

Also, q'_radiation = ε•σ((T_air)⁴ - (T_i)⁴)

Thus, rewriting;

q'_forced = q'_free convection + q'_radiation

We have;

q'_forced = [h_forced(T_∞ - T_i)] + [ε•σ((T_air)⁴ - (T_i)⁴)]

Plugging in the relevant values to obtain;

q'_forced = [30(473 - 298)] + [0.95•5.67 × 10^(−8)((473)⁴ - (298)⁴)]

q'_forced = 5250 + 2271.41

q'_forced = 7521.41 W/m²

7 0
4 years ago
Engineering uses scientific thinking to solve real-world problems.<br> True<br> False
erik [133]
True, In the STEM field engineers use and think in terms of sciences like physics and math.
8 0
3 years ago
Both model building codes and NFPA __________ can be used to determine the type of construction used in a building.
Alex777 [14]

Answer:

Both model building codes and NFPA 220 can be used to determine the type of construction used in a building.

8 0
3 years ago
Other questions:
  • A well-insulated, rigid tank, having a volume of 2 m3 , contains saturated water vapor at 120 ◦C. The water is stirred until the
    13·1 answer
  • Which of the following is true about the n-way analysis of variance (ANOVA)?
    6·1 answer
  • A battery is an electromechanical device. a)- True b)- False
    6·1 answer
  • Select the correct answer.
    8·1 answer
  • A suspension of Bacillus subtilis cells is filtered under constant pressure for recovery of protease. A pilot-scale filter is us
    6·1 answer
  • g What property of flip-flops distinguishes them from latches? A. Flip-flops will never change state more than once per clock cy
    13·1 answer
  • A refrigerator with an average cop of 2.8 used to cool a well-insulated container whose contents are equivalent to 10 kg of wate
    11·1 answer
  • I need help with the question
    12·1 answer
  • In this unit, you looked at modern vehicle technology and the ad-
    11·1 answer
  • During gait the body is gaining speed:____.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!