Answer:
1461.7 g of AgI
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CaI₂ + 2AgNO₃ —> 2AgI + Ca(NO₃)₂
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Next, we shall determine the number of mole AgI produced by the reaction of 3.11 moles of CaI₂. This can be obtained as follow:
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Therefore, 3.11 moles of CaI₂ will react to produce = 3.11 × 2 = 6.22 moles of AgI
Finally, we shall determine the mass of 6.22 moles of AgI. This can be obtained as follow:
Mole of AgI = 6.22 moles
Molar mass of AgI = 108 + 127
= 235 g/mol
Mass of AgI =?
Mass = mole × molar mass
Mass of AgI = 6.22 × 235
Mass of AgI = 1461.7 g
Therefore, 1461.7 g of AgI were obtained from the reaction.
Answer:
10
Explanation:
I did that already. You got beo
Moles of Li2CO3 = 1.53/73.891 = 0.0207 mole
Since HCl is in excess, amount of CO2 will depend on the limiting reagent which is Li2CO3.
∴Moles of CO2 = Moles of Li2CO3 = 0.0207.
They both build up to form electricity
Answer:
All three are present
Explanation:
Addition of 6 M HCl would form precipitates of all the three cations, since the chlorides of these cations are insoluble:
.
- Firstly, the solid produced is partially soluble in hot water. Remember that out of all the three solids, lead(II) choride is the most soluble. It would easily completely dissolve in hot water. This is how we separate it from the remaining precipitate. Therefore, we know that we have lead(II) cations present, as the two remaining chlorides are insoluble even at high temperatures.
- Secondly, addition of liquid ammonia would form a precipitate with silver:
; Silver hydroxide at higher temperatures decomposes into black silver oxide:
. - Thirdly, we also know we have
in the mixture, since addition of potassium chromate produces a yellow precipitate:
. The latter precipitate is yellow.