1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nikolay [14]
3 years ago
8

An electric kettle is required to heat 0.64 kg of water from 15.4°C to 98.2°C in six

Engineering
1 answer:
skelet666 [1.2K]3 years ago
7 0

Answer:

Almost done

Explanation:

I am just finishing up my work

You might be interested in
A ballistic pendulum consists of a 3.60 kg wooden block on the end of a long string. From the pivot point to the center‐of‐mass
Pavel [41]

Answer:

17.799°

Explanation:

When the bullet hits the block at that time the momentum is conserved

So, initial momentum = final momentum

P_i=P_f

So 28\times 10^{-3}\times 210=(3.6+0.028)v_f

v_f=1.6207\ m/sec

Now energy is also conserved

So \frac{1}{2}\times (3.6+0.028)\times 1.6207^2=(3.6+0.028)\times 9.81\times 2.8(1-cos\Theta )

cos\Theta =0.8521So\ \Theta =17.799^{\circ}

3 0
3 years ago
Write a method printShampooInstructions(), with int parameter numCycles, and void return type. If numCycles is less than 1, prin
kirill [66]

Answer:

// The method is defined with a void return type

// It takes a parameter of integer called numCycles

// It is declared static so that it can be called from a static method

public static void printShampooInstructions(int numCycles){

// if numCycles is less than 1, it display "Too few"

   if (numCycles < 1){

       System.out.println("Too few.");

   }

// else if numCycles is less than 1, it display "Too many"

    else if (numCycles > 4){

       System.out.println("Too many.");

   }

// else it uses for loop to print the number of times to display

// Lather and rinse

  else {

       for(int i = 1; i <= numCycles; i++){

           System.out.println(i + ": Lather and rinse.");

       }

       System.out.println("Done");

       

   }

}

Explanation:

The code snippet is written in Java. The method is declared static so that it can be called from another static method. It has a return type of void. It takes an integer as parameter.

It display "Too few" if the passed integer is less than 1. Or it display "Too much" if the passed integer is more than 4. Else it uses for loop to display "Lather and rinse" based on the passed integer.

8 0
3 years ago
Before finishing and installing a shelved cabinet you just constructed, you need to check the
Greeley [361]

Answer:

Carpenter's square

Explanation:

The most common hand tool used to measure or set angles with its application extending to setting angles of roofs and rafters. Another name of a Carpenter's square is a framing square.

Other hand tools that are used to measure angles are;

  • The combination square that allows a user to set both 90°  and 45° angles
  • A Bevel that allows users to set any angle they like.
  • A Protractor that resembles a bevel but its marks are marked in an arc.
  • An electromagnetic angle finder which gives a reading according to the measure of the arms adjusted by the user.
7 0
3 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
4 years ago
What is the minimum recommended safe distance from an X-ray source?
lara31 [8.8K]
Hi! I believe the answer is 2 meters(:
3 0
3 years ago
Read 2 more answers
Other questions:
  • The human circulatory system consists of a complex branching pipe network ranging in diameter from
    10·1 answer
  • A turbine produces shaft power from a gas that enters the turbine with a (static) temperature of 628 K, a velocity of 143 m/s an
    7·1 answer
  • A Toyota Camry of mass 1650 kg turns from Chaplin Road to Route 79, thereby accelerating from 35 MPH in the city till 70 MPH on
    6·1 answer
  • What type of drawing would civil engineers use if they needed to show an
    11·1 answer
  • If 100 J of heat is added to a system so that the final temperature of the system is 400 K, what is the change in entropy of the
    5·1 answer
  • Engineering practices include which of the following? Select all that apply.
    10·1 answer
  • I want to solve the question
    11·1 answer
  • Why is communication one of the most important aspects of an engineer's job?
    12·1 answer
  • Silicon chips are used primarily in ?
    9·1 answer
  • Aqueous cleaners are ________ parts cleaning agents.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!