B) It’s material moves due to convection currents.
The power dissipated across a component can be calculated through the formula P=I^2xR
Substituting the values in we get P=(0.5)^2x10=2.5W
A 15.75-g<span> piece of iron absorbs 1086.75 </span>joules<span> of </span>heat<span> energy, and its ... </span>How many joules<span> of </span>heat<span> are </span>needed<span> to raise the temperature of 10.0 </span>g<span> of </span>aluminum<span> from 22°C to 55°C, if the specific </span>heat<span> of </span>aluminum<span> is o.90 J/</span>g<span>”C2 .</span>
The study of sound is called sonics and the study of sound waves are acoustics
Answer:
Rebounce angle is 345°
Rebounce speed is 989.95m/s
Explanation:
Calculate the x component of the velocity of the bullet before impact by using the following relation:
Vbx= Vb Cos thetha
Here, is the initial velocity of the bullet, Vo = 1400m/s and is the incidence angle of the bullet.= theta = 15°
Substituting
Vbx = Cos15 ×1400 = 1352.30m/s
Calculate the y component using the relation:
Vby = Vo Sin theta
Vby = sin 15° × 1400
Vby = 362.35m/s
The rebounce angle = 360 - incidence angle
Rebounce angle =( 360 - 15)° = 345°
The rebound speed V' = Vby - Vbx
V' = (1352.30 - 362.35)m/s
V' = 989.95 m/s