To solve this problem we will apply the concepts related to electric potential and electric potential energy. By definition we know that the electric potential is determined under the function:

= Coulomb's constant
q = Charge
r = Radius
At the same time

The values of variables are the same, then if we replace in a single equation we have this expression,

If we replace the values, we have finally that the charge is,




Therefore the potential energy of the system is 
Answer: 5 seconds
Explanation:
Given the following :
Inductance (L) = 40 henry
Resistance = 8 ohms
The circuit given above is a Resistor - Inductor (RL) circuit network. The time constant of an RL circuit is the ratio of the circuit Inductance (L) and Resistance (R). Time constant is measured in seconds.
THAT IS;
Time constant = L / R
THEREFORE ;
Time constant = 40 / 8
Time constant = 5 seconds
Uranium is the right answer. Scientists use 5 percent of the uranium after the bomb is refused to create stronger and better nuclear bombs.
Answer:
B. Chemical to Electrical to Radiant
Explanation:
Let's write the equations of motion on both x- (horizontal) and y- (vertical) axis. On the x-axis, it's a uniform motion with constant velocity vx. On the y-axis, it is a uniformly accelerated motion with initial height h=90 m and acceleration of

pointing down (so with a negative sign):


First, let's find the time at which the jumper reaches the ground. This happens when Sy(t)=0:

and so

Then, we can find the horizontal speed. In fact, we know that at the time t=4.28 s, when the jumper reached the ground, he covered exactly 180 m, so Sx=180 m. Using this into the law of motion in x, we find