Answer:
The magnitude of the force required to move the electron through the given field is 2.203 N
Explanation:
Given;
The field strength of the electron, E = 1.375 x 10¹⁹ N/C
charge of electron, q = 1.602 x 10⁻¹⁹ C
The magnitude of the force required to move the electron through the given field is calculated as follows;
F = Eq
F = (1.375 x 10¹⁹ N/C) (1.602 x 10⁻¹⁹ C)
F = 2.203 N
Therefore, the magnitude of the force required to move the electron through the given field is 2.203 N
The answer is C) an electromagnetic wave
An electromagnetic wave, which includes electromagnetic radiation such as visible light, moves the fastest of all of the options listed by a significant margin, especially through space. In fact, light travelling through space is technically the theoretical limit of how fast something can travel.
The big bang is how astronomers explain the way the universe began. It is the idea that the universe began as just a single point, then expanded and stretched to grow as large as it is right now (and it could still be stretching).
Since bulb is connected in the closed circuit at the position of D
as well as switch B is also closed in that position so the current will flow through the bulb and bulb will glow in that position
So the most appropriate correct option will be
D. The light bulb will be on
acceleration of the car = 0.33 m/s²
Explanation:
To calculate the acceleration of the car we use the following formula:
acceleration = change in velocity / time
change in velocity = final velocity - initial velocity
change in velocity = 23 m/s - 13 m/s = 10 m/s
change in velocity = 10 m/s
acceleration = 10 m/s / 30 s
acceleration = 0.33 m/s²
Learn more about:
acceleration
brainly.com/question/4134594
brainly.com/question/1213762
#learnwithBrainly