Answer:
the first one is balanced.
The valence of lead is 4.
Hence the name of the compound is called Lead (IV) oxide.
<h3>Further explanation</h3>
Given
PbO₂ compound
Required
The valence of Pb
Solution
The oxidation number of element O in the compound = -2, except for OF₂ the oxidation state = + 2 and the peroxides (Na₂O₂, BaO₂) the oxidation state = -1 and superoxide, for example KO₂ = -1/2.
The oxidation state in the uncharged compound = 0,
So The oxidation state of Pb :
Pb + 2.(-2) = 0
Pb - 4 = 0
Pb = +4
When the amount of heat gained = the amount of heat loss
so, M*C*ΔTloses = M*C* ΔT gained
when here the water is gained heat as the Ti = 25°C and Tf= 28°C so it gains more heat.
∴( M * C * ΔT )W = (M*C*ΔT) Al
when Mw is the mass of water = 100 g
and C the specific heat capacity of water = 4.18
and ΔT the change in temperature for water= 28-25 = 3 ° C
and ΔT the change in temperature for Al = 100-28= 72°C
and M Al is the mass of Al block
C is the specific heat capacity of the block = 0.9
so by substitution:
100 g * 4.18*3 = M Al * 0.9*72
∴ the mass of Al block is = 100 g *4.18 / 0.9*72
= 19.35 g
Answer:
Yes. Since for a substance to be a Bronsted-Lowry acid they have to be able to donate protons, and to be a Lewis acid a substance would have to accept electrons, there are substances which cannot donate protons but can accept electrons.
Explanation:
Hope this helped!